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CHAPTER 1

INTRODUCT ION

This report presents the work done and the results

obtained during the year February 1964 - January 1965.

Certain parts of the material contained in this report have

been presented in the three quarterly reports submitted

previously. Repetition of this material was deemed desir-

able, however, in the interest of making this report a

presentation of the totality of the work done on the research

contract up to the present time, complete in and of itself,

with no necessity for referring to the previous quarterly

reports.

Each chapter is intended to be a complete presentation

of its own material, with no cross-referencing among the

individual chapters. In the interest of clarity and contin-

uity of presentation, however, some duplication of material

will be noted in various chapters, notably in chapters 3 and

4, in both of which is presented explanations of some of the

classical methods for the solution of the optimal control

problem.
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Chapter 2 contains the development of a mathematical

model for a space vehicle. A computer program suitable for

use in simulation of the space vehicle on a digital computer

is explained, and examples of the use of the program are

given.

3. Some of the "classical" techniques for the solution of

the optimal control problem are Given. end their limitetions

are pointed out. The Specific Optimal Control approach to

the optimal control solution is then presented, and several

methods are given for finding the specific optimal solutions.

It is felt that this approach to the solution of the attitude

control problem may prove to be quite fruitful.

The optimal control problem in which the control input

is bounded is examlned in chapter 4. Shortcomings of the

classical methods for solution of this problem are pointed

out, and some methods of solution whlch overcome some of

these difficulties are explained. Examples of the use of

these methods are provided and comparisons of the methods

are given.

Chapter 5 is concerned with sequential estimation of

states and parameters in non-linear systems. A technique

is developed with which sequential, least-square estimates

I
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of the states of a system may be obtained, based on noisy

measurements of possibly nonlinear combinations of the states

of the system. The use of these estimates for the purpose

of controlling the system is investigated. Experimental

results of the use of the techniques developed in this chap-

ter are given.

In chapter 6, an additional approach to the solution of

the specific optimal control _roblem is civen. This approach

makes use of a min-max criterion for the optimization. Such

a criterion requires that the maximum deviatlon be minimized°

as opposed to a least-squares criterion, in which a sum o5

the squares of deviations is minimizec]. Exemples are civen

which illustrate the use of this approach in a spec:£Jc

optimal control problem.

Appendices G, H, I, J, and K contain listings c,f the

Fortran programs which were used to obtain the results given

in the various examples in this report. Explanations of

the functions of the programs are given in each appendix.

These appendices are in volume II.
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CHAPTER 2

MATHEMATICAL MODEL AND DIGITAL COMPUTER

SIMULATION OF SPACE VEHICLES

2.1 Summary

The differential equations describing the motion of an

arbitrary space vehicle about its center of mass are deter-

mined and arranged in a form suitable for digital computer

solutions. From these equations a computer program is devel-

oped which allows the simulation of a space vehicle and its

attitude control system on an IBM 7094 or similar machine.

A test of the program is shown in Figure 2.1 where one of the

computer model's angular velocities is compared with tele-

metered values from Ranger VII's initial sun acquisition.

This computer model is now being used to investigate

the feasibility of new control schemes.

2.2 Equations of Motion

A mathematical model for a spacecraft is determined by

representing the vehicle as an invariant inertia tensor

written about a set of mutually perpendicular axes through

the center of mass. Any translational motion of the center
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of mass is not considered because it would not affect the

attitude control problem.

One criticism which might be raised at this point is

that the moments of inertia are not constant throughout the

flight of a spacecraft, but vary because of antenna angle

changes and other factors. A time varying inertia tensor

is not allowed, however, because it is not intended to simu-

late the entire attitude history of a vehicle with one com-

puter run. What is intended _sthe simulation of certain

portions of the flight, such as sun acquisition, where the

inertia tensor can be considered constant.

2.2.1 Coordinate Systems

An inertially fixed cartesian coordinate system through

the center of mass is assumed and represented by upper case

letters X, Y and Z. In normal usage the Z axis is considered

to point towards the sun. The vehicle control axes, called

the body axes, are next represented in this inertial system

and denoted by the lower case letters x, y, and z. See below

and Figure 2.2.
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2.2.2 Description of the Angular Velocities of The Vehicle

I

I

I

I

Following the development in Goldstein [1] the angular

momentum of a spacecraft is given by:

L = I _ (2.2.1)

where I is the inertia tensor written about the control axes:

I

I

I

I I I
xx xy xz

I I X
xy yy yz

I I I
xz yz zz

I

I

I

_ is the angular velocity vector with components _x' _y' and

about the three body axes.
z

m

W
x

Y



9

The basic equation of motion is then-

d_L
-- = N
dt

wheEe: (2.2.2)

N
i

is the applied torque.

It is understood here that the derivative is taken with

respect to an inertially fixed system. Since the body system

is rotating in inertial space, this derivative can be ex-

pressed as_

inertial = _ body
(2.2.3)

body

(2.2.4)

Assuming an invariant inertia tensor

(2.2.5)

Solving this linear algebraic system for __
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I X

Det

i

(_× - _L + %Ly) I Iz xy xz

- I
(Ny _zLx + _xLz ) lyy yz

- + _yL x) I I(N z _xLy zy z

J

pet If]

I0

(2.2.6)

I

I Det

Y

m m

Ixx (Nx - _yL z + _Ly) Ixz

ly x (Ny- _zLx + _xLz) Iy z

Izx (Nz - _x Ly + _yL x) Izz

Det [I ]

(2.2.7)

I

I
I

I
&

Z

Det

i

Ixx Ixy (Nx - _L z + _zLy)

Iy x Iyy (Ny- _zLx + _xLz )

- + Lx)Izx Izy (Nz _xLy

Dec [z]

-- (2.2.8)

2.2.3 Position Description by ruler Angles

Once an inertial reference is established, the body

system rotation with respect to this reference may be de-

scribed by three ruler angles. Consider a roll-pitch-roll



11

sequence as shown in Figure 2.3.

The first rotation yields a transformation

x' -- x cos _ + y sin

y' = -x sin _ + y cos

Z' = Z

X _ I

y,t = A I

X

t

Yl

Z

A ! =

m

cos

-sin

0

The second rotation yields a transformation:

X II = X I

y" = y' cos O + z' sin 6

z" = -y' sin @ + z' cos e

X" I X'

Y" I = A" y' ; A" =

I

.Z"J Z 'n m

m

1

0

0
n

The third rotation yields a transformation

= x" cos % + y" sin

= -x" sin % + y" cos

Z N I .., ZH

sin

cos

0

0

cos e

-sin %

I

0

0

1
m

m

0

sin e

cos e

I

I

I
I

,I

I
I

I

I
I

I

I
I

I

I

I
I

I

I
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Figure 2.3
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B _ m

X" , I _ X"
1
i
i

Y" ' I = A"' y" _ A" ' =

1

Z,,, [ _Z .°_
W ---a

m m

cos % sin _ 0

-sin % cos _ 0

0 0 1

The third rotation fixes the final position of the body axes

and hence the triple-prime coordinates may be identified as

the body system. The transformation from the inertial sys-

tem to the body system is then:

m i

X

Y

Z
B m

= A" ' A" A'

I_l where:

m m

X

Y

Z
n _

is in the inertial system and

X

Y is in the body system

Z
m

What must now be determined is the relationship between

the body rates and the rate of change of these ruler angles.

I

I

I
I

I
I

I

I

I
I

I
I

I

I

I
I

I
I



!

I

!

14

can be represented as a vector, using the right hand

rule, along the z"' axis. This velocity then has components

along each of the body axes:

i _x = 0

| _ = 0

In a similar fashion 0 is a vector along the x" axis

and hence in the body system:

i

i

I

= A" o

= 0 COl

•X
I e = -0 sin

Y

I Oz = 0

I

I

I

I

Finally for _ •

m a

_x

@y
= A" ' A"

-°l
I
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_x = _ sin $ sin 0

_y = _ cos $ sin %

_z = _cos e |

The sum of these rates must yield the body rates, __

z

= 8 cos % + _ sin _ sin
x

= -% sin _ + _ cos _ sin 8
Y

i "= + _ COS e

Solving for the Euler anglo rates:

. tu sin % + w cos

x y (2.2 9)
= sin e

e = _ cos ¢ - _ sin _ (2.2.10)
x y

: _ - _ cos 8 (2.2.11)
z

I

I

I

I

I

I

I
• I2.3 Fomula_ion of the Equations fo r Diqital Solution

Equations (2.2.6)-(2.2.11) are six simultaneous first

order nonlinear differential equations which describe com- I

pletely the attitude of a space vehicle. Given a set of I

initial velocities and the initial position, if the torque
|

_N(t) is known these equations can be integrated by either I

an analog or digital computer to describe the motion as a
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function of time•

Because of the many multiplications and trigonometric

functions involved, it is essentially impossible to use an

analog computer alone for this operation. This problem is,

however, well within the scope of a large digital machine,

such as an IBM 7094, when a numerical integration technique

such as "Runge-Kutta Integration" is used.

2•3.1 Singularities

Before rushing ahead and writing a program to accomplish

the solution of these equations, their nature should be in-

vestigated. It is n_ticed that the right hand sides of equa-

tions (2.2.9) and (2.2.11) possess singularities when the

ruler angle 8 attains the values:

8 = • nw ; n = 0, I, 2, ...

The temptation here is to rationalize in the following manner:

These singularities can be ignored because the computer

can easily work with numbers 10+3_magnitude and using float-

ing-point numbers the chances of % attaining a value such

that 1/sin % is greater than 10 +30 are almost nil. Also the

¢

derivatives _ and _ will probably not remain large for long

and the resulting accuracy loss will be small.
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To evaluate this assumption the physical interpretation

of the singularities should be investigated. Consider a

spacecraft aligned with the inertial system. The position

i

I
I

description in a roll-pitch-roll sequence of Euler angles

would be, of course. ,_ = 0: % = 0: and _ = O. Now refer

to Figure 2.4 and observe the sequence which describes the

spacecraft after having made a yaw turn of _ radians. The

Euler angles are _ = + 2 ' 8 = + _, and _ = - -_2 "

Since the original position with 8 = 0 was at one of

the Singularities, it can be seen that these singularities

cannot be "glossed over". The magnitude of the changes in

and _ when going through a rate singularity can be large,

w

• _ in this example, and thus the position error accrued m

by numerically integrating through a singularity will be

very large, m

The technique used in the actual model is essentially m
I

the one proposed by P. Eckman [2!. Equations (2.2.9)-(2.2.11)
m

may be written in terms of a different Euler sequence. If m

this new sequence is properly selected the rate singularities

of the new Euler angles will not occur at the same physical

position of the body axes with respect to the inertial frame.

Consider a roll, pitch, yaw sequence where _' = roll,
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@' = pitch, and _' = yaw. The new rate equations are:

. (_ cos _' - _x sin _')
_, = (2.3.1)

COS e'

I
I

I
8' = _ sin 4' + t_ cos _' (2.3.2)

z x

_' : _ - _' sin 0' (2.3.3) I

Y

The technique used in the model is to integrate using I

one sequence of ruler angles until a rate singularity is

approached. At this point the model switches ruler sequences

and continues on using the new set of ruler angles.

The only problem here is that in order to switch se-

quences the present position must be determined using the

new ruler sequence. The way in which this is accomplished

is to note that the matrix A in the relationship:

m

x

Y

z
m .d

= A

-- m

X

Y

Z
m .

is invariant regardless of which set of ruler angles param-

atrize it. Thus to change sequences A is computed in terms

of the present sequence of ruler angles and then the inverse

I
I

I

I

I
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operation is performed; that is, the new angles are found

from the A matrix values.

2.3.2 Computer Program

The computer program which has been completed is com-

pletely described in a forthcoming Jet Propulsion Laboratory

report from JPL Section 344. In brief the program is set up

to numerically integrate using Runge-Kutta and Adsms-Moulton

techniques. The user of the program supplies the initial

ruler angles and angular velocities along with the vehicle's

inertia tensor. When these parameters and conditions are

known, the user must write a subprogram to simulate the con-

trol system to be used. Completing this, the subprogram and

data are fed to the computer along with the model program.

The computer will now produce a trajectory, printing

out the ruler angles and angular velocities at prescribed

intervals.

2.4 _ontrol Subproqrams

Two control subprograms have been developed for use

with the model program. The first is for simulation of sun

acquisitions using sun sensors and gyro rate feedback. The

second is for the simulation of one cruise phase of a flight
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using derived rate feedback and sun sensors.

2.4.1 Sun Sensor Model

The sun sensors (pitch and yaw) were modelled in the

following manner. It was assumed that the conventional

sun sensors wou±d be used with solar cells and shadow masks.

I

I
This type of system has an "on axis" characteristic as

shown below. This is for one pitch sensor when the sun is

in the y-z plane. I

+V

/

v((Z), Output voltage

/I
0

_.- Linear

range

-rr Pitch angle¢Z,

( rod ia ns)

V = SATURATED VOLTAGE LEVEL
o

I
I

I

I

I
Now when =-.._e vehicle is positioned so that the sun is

no longer in the y-z plane the pitch output will be reduced

because the illuminated area of the cells decreases as the

cosine of the angle of offset from the x-y plane. This offset

I

I

I
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angle is angle $ for the pitch sensor and angle 6 for the

yaw sensor. See Figure 2.5.

The resulting sun sensor models produce outputs of

v(_) cos _ for pitch and v(7) cos 5 for yaw. In the actual

program the saturated voltage output and linear range are

treated as input data.

2.4.2 Subprogram for Attitude Control During Sun Acquisition

This subprogram operates in the following manner. The

numerical integration in the main program must have available

the torques on the vehicle. When torque values are needed,

the control subprogram is called. In this particular sub-

program the present values of the ruler angles are sent to

a routine simulating the sun sensors. Angles u, B, 7, and 6

are calculated and the voltage outputs of the pitch and yaw

sun sensors are determined. The angular velocities are then

sent to a gyro-simulating routine where the proper scale

I

I
I

factor is determined and the gyro output voltages are pro-

duced. Then the gyro voltages are summed with the sun sensor

voltages and these sums are sent to the switching amplifier

routine where the torques are determined.
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2.4.3 Derived Rate Cruise Mode Control Subprogram

The subprogram for derived rate control is similar to

the acquisition program in that it uses identical sun sensor

and switching amplifier routines. The major differences

are: (i) constant solar torques are applied to the vehicle,

(ii) the gyroscope routine is replaced by a derived rate

routine, and (iii) a celestial sensor routine is added.

The performance of this control subprogram when incor-

porated into the overall model program can be seen from

Figure 2.6. Here a Ranger-type vehicle was started with zero

initial conditions under the influence of constant magnitude

solar torques in pitch and yaw. The solar torques were made

about an order of magnitude greater than those encountered

in actual flights in order to conserve computer time. As

can be seen from the figure, the system quickly established

limit cycle operation in pitch. Yaw and roll rates are not

shown, but limit cycle operation was also present in yaw and

there was some roll motion due to the non-zero products of

inertia. 2.88 volts was-set as the switching level in the

pitch error channel and from the figure the derived rate

voltage increment at switching can easily be observed.

The derived rate feedback voltage is determined in the
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following manner. The controller subroutine is first called

by the main program to determine the vehicle torques. This

subprogram computes the pitch and yaw sun sensor outputs and

the celestial sensor output. Next a derived rate subroutine

is called which computes the proper time constants for charge

or discharge and simple ruler integration is then used to

determine the outputs from the derived rate networks. A

"minimum-on time" is included by setting the main program for

Runge-Kutta integration and forcing it tO integrate with the

torque applied for the minimum time.

2.5 Evaluation of the Program

Since a general analytical solution for the vehicle

equations in not known it is somewhat difficult to check

nemerical accuracy. Two types of checks have been made for

a vehicle with a 0.6 mrad/sec s acceleration constant about

all axes. These checks indicate at least 4 significant

figure accuracy for rates and 3 significant figure accuracy

for ruler angles over a 500 second (vehicle time) period when

the integration step size range was set so that the computer

running time (7094) was 2.5 minutes.

The first check was to set the initial roll and yaw

rates to zero and apply torque only about the pitch axis.
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This gives rise to an equivalent single degree of freedom

system, the response of which can be determined analytically.

The second check was to start with initial rates about all

axes and let the vehicle tunble with no applied torque. Since

the rate equations are norm-invariant for a principal-axis

system the sum of the squares of the rates weighted by their

respective moments of inertia should remain constant

2.6 Future Work

The simulation programs are included in this report in

Appendix G. As can be seen the routines are very segmented;

that is, every program is made up of many subroutines, all

having a uniform common area. This was done so that each

subroutine could be used separately or in various groups.

This feature will enable inclusion of the vehicle dynamics

in larger optimum control determining programs which hope-

fully will lead to a better understanding of optimization,

specific controllers, and the optimum solution for various

performance indices.
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CHAPTER 3

THE OPTIMAL CONTROL PROBLEM

3.1 Summary

In this chapter, the possibility of using optimal con-

trol theory for solving a complex space age automatic control

problem is examined. Such a problem for example, is the at-

titude control of a space vehicle. It appemrs that consider-

able modification of the theory is necessary before practical

controllers can be devised for satisfactory operation of the

space vehicle during the acquisition mode. The difficulties

encountered in using classical optimal control theory are

brought out. One can see that it is desirable to reformulate

the problem as a specific optimal control problem. Several

computational techniques for solving such specific optimal

control problems are explained using many examples.

3.2 A Typical O_timal Control Problem

A typical optimal control problem is the following: The

object to be controlled (the space vehicle) is described by

a vector differential equation of the form
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x = f(t, x, u) (3.2.1)

where x is a n-dimensional vector (x l, x_ ..... x )' , the
-- n

state of the system; and _ is an m-dimensional vector (u_,

us ..... u )', the control vector. The prime denotes the
L_L

transpose. The components u. (t),
1

i = I, 2 .... , m, are

called the control functions, f is an n-dimensional vector

(fl, f_ ..... f )'. The f.,
n 1

i = 1 ..... n, are assumed to

possess piecewise continuous second partial derivatives with

respect to all their arguments.

The control functions may be either unconstrained or

may be required to fall within an allowable range of values.

The general constraint on _(t) will be symbolically denoted

by u ¢ _ where _ is a suitably defined set which in general

is assumed to be closed. In most applications the u (t),
1

i = i, 2 .... m are required to be at least piecewise con-

tinuous.

Let the object be in an initial state

X(to) = C (3.2.2)

The control problem is to find u(t) such that a given

functional of x(t) and u(t), called the index of performance
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or return function, of the form

T

I(u) = I g(t, x(t), u(t)) dt (3.2.3)
t
o

is minimized.

In equation (3.2.3) g is a scalar-valued function of

its arguments and is assumed to possess piecewise continuous

second partial derivations with respect to all its arguments.

The terminal time T is assumed to be fixed in this discus-

sion. In general it need not be so.

3.3 Classical Methods of Solution

Four classical methods that are available to solve

this problem are (i) the Euler-Lagrange differential equa-

tions, (ii) Pantryagin's maximum principle, (iii) Bellman's

dynamic programming, and (iv) Hamilton-Jacobi theory. No

detailed derivations of these will be given; only the re-

sults will be stated. A brief "engineering" demonstration

of these methods is given in Appendix A.

i. Euler-Laqranqe differential equations

This method yields u*(t) the optimal open loop solu-

tion. The method is as follows. Form the Lagrangian:
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L(t x0 u, A) = g(t, x u) + <10 f(t x, _u) - x>

(3.3.1)

where _ is an n-dimensional multiplier vector. The Euler-

Lagrange differential equations are given by:

d__C___Lb = a_LL
dt _ _x -- : a_x _ _ (3.3.2)

d C_._A_ aL_-_ - a_ " x : _f(t,_x,_u)

_f

_ : " Lu-

!
(3.3.3)

!

(3.3.4) I

(equations (A.l.l), (A.4.10) and (A.4.11) in Appendix A)

Equations (3.3.2) and (3.3.3) are 2n ordinary differen-

tial equations with 2n boundary conditions given by the

initial conditions _(t O) = _ and the transversality condi-

tions which are in this case k(T) = 2- Equation (3.3.4) is

a finite equation which yields u as a function of x(t) and

A(t) • This is used to eliminate u in equations (3.3.2) and

(3.3.3), and the resulting two point boundary value problem

is solved for x* (t) and __k*(t) . Substituting for x* (t) and

k*(t) in (3.3.4) results in u = u*(t).
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The Euler-Lagrange method as outlined here implicitly

assumes that the components of the control vector u in equa-

tion (3.2.1) are unconstrained. This is certainly not the

case in the space vehicle attitude control problem, The

method can be modified to take care of bounded control. This

modification, in effect, leads to the use of the Pontryagin's

maximum principle which is discussed next.

The Euler-Lagrange differential equations are necessary

but not sufficient conditions for an optimal solution.

ii. Pontryaqin's Maximum Principle.

Form the Hamiltonian7 H(t, x, _k, u) defined as

H(t, x, k, u) = <__, f(t, _x, u)) + g(t, _x, u) (3.3.5)

where _ is an n-dimensional multiplier vector. _ = _*(t, _, _)

is obtained by minimizing H with respect to _ alone. Set:

aH f
--- 0 (3.3.6)

aul
U = U*

(Note: equation (3.3.6) is true only if the minimum occurs

interior to the set of admissable values for u. In general

the minimization of the Hamiltonian is performed over the

admissible range of the u's.) Define:
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H*(t, x, _k) = Min H(t, x, l, u)
u(t) _

(3.3.7)

This minimization will yield u* explicitly (at least in

principle) in the form

u* = u*(t, _x, _k) (3.3.8)

Thus

H*(t, x, _k) = H(t, x, ),, u*(t, _x, _k)) (3.3.9)

Form the canonic equations:

1

all*(t, _x, )_)

1

i = i, ........., n (3.3.10)

1

aH*(t, _x,__)

()X.
1

i : i, ........., n (3.3.11)

(equations (A.4.18) and (A.4.19) in Appendix A)

The solution of equations (3.3.10) and (3.3.11) subject

to the intial conditions x(t o) = C and the transversality

conditions yields the optimal trajectory x*(t) and _k*(t).

This solution is substituted into 2" = _*(t, x, k) to yield

the optimal control function.
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In general, the solution of the Euler-Lagrange equa_

tions or the canonic equations yields the optimum open loop

solution. The Hamilton-Jacobi or dynamic programming formu-

lation of the optimum control problem will yield the closed

loop or "feedback law" solution. These methods are dis-

cussed next.

iii. Bellman's dynami c proqramminq.

Dynamic programming is a powerful tool that can be

used to solve, in principle, a variety of multi-stage deci-

sion processes. This notion is made clear if one considers

the duration of the process, (T-to), to be divided into a

finite number of time intervals. The problem then is to

choose a control vector u as a function of the state x at

the beginning of each of these time intervals such that the

performance index attains a minimum value. It is clear that

this will lead to an optimal control law.

The functional equation of dynamic programming which is

often referred to in the literature as the Bellman equation

is derived in Appendix A.

Since the minimum value of the performance index de-

pends on the initial state C and the starting instant 7,

define the "return function" or "value function" J(C, 7) as
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Min T

j(_c, r) = u(t) c n J
T & t _T y

g(t, _, u) dt (3.3.12)

subject to the differential constraint (3.2.1) for a process

starting at time r with the initial state C and terminating

at fixed time T.

The return function satisfies the equation

j(_c, r) =
u(t) ¢ _ g(r, C, u(r))

+ JCc + _f(r, c, u(r))4,

r + _) + 0(__)] (3.3.13)

Equation (3.3.13) is the discrete version of the Bellman

equation which is useful for numerical solutions.

The continuous version of the Bellman equation is (equa-

tion (A.2.14) in Appendix A)

___J Min [_t + g(t, x* u(t))u(t) ¢ _ -- ' --

+ (f(t,_ x*, _u(t)), ?x J> ] = 0

(3.3.14)

The boundary condition on (3.3.14) is

J(_X_, T) = 0 (3.3.15)
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In equation (3.3.14), the variables C and r

have been replaced by x* and t, the "current sta_e" on an

optimal trajectory and current time respectively.

The solution of (3.3.14) with boundary condition (3.3.15)

will yield the optimal control law in the form, u* = u*(t, x*).

iv. Hamilton-Jacobi Theory

In equation (3.3.14) when the minimization is performed,

the resulting equation is called the Hamilton-Jacobi partial

differential equation.

From equation (3.3.5)

H(t. x*, u, A*) = g(t, _x*, u) + <f(t, x*. u), _*>

(3.3.16)

In terms of the minimum value of the Hamiltonian, equa-

tion (3.3.14) is equivalent to (equation (A.2.20) in Appendix

A)

_J
-_- + H*(t X* Vx, J) = 0 (3.3.17)St ' '

Equation (3.3.17) when solved with the boundary condi-

tion (3.3.15) will yield J(x* t).

k* is evaluated from the relation

The multiplier vector

_* = Vx. J
(3.3.18)
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Thus

u*(t, x*) = u*(t. x,*A*)l

- - i__*= v×.j

The optimal control law is explicitly obtained as a

function of the current time and the state.

3.4 Critique of Classical Methods

The purpose of this section is to outline the diffi-

culties encountered when the methods presented above are

applied to control problems, with emphasis on application

to the attitude control problem.

Consider first the Euler-Lagrange differential equa-

tions (3.3.2) through (3.3.4). For a given set of initial

conditions on x these equations constitute a two point

boundary value problem, i.e. conditions on x at the initial

time and conditions on __ at the terminal time are specified.

In general two point boundary value problems are difficult

to solve.

One of the computational methods which appears to be

promising for solving problems of this type is quasilinear-

ization. An outline of this method is given in Appendix B.
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After determining x(t) and _k(t) then u*(t) the so-called

control function or open loop control can be determined.

Nothing at all is said concerning the synthesis problem,

i.e. finding _*(t, _). Since this is the problem of in-

terest, the solution of the Euler-Lagrange equations pro-

vides only limited data.

The Maximum _rinciple provides a different theoretical

approach to the optimization problem which is particularly

useful for the case of bounded control. Practically, how-

I ever, the resulting canonic equations to be solved, i.e.

equations (3.3.10) and (3.3.11), represent the same type

I of problem as the Euler-Lagrange differential equations.

Both sets of differential equations represent two point

boundary value problems and in many cases the equations are

identical. Hence the Maximum Principle and the Euler-Lagrange

equations provide means of determining the control function

u*(t). There still remains the synthesis problem. It is

the exceptional case where the control law can be determined

by the above methods.

This leads then to the Hamilton-Jacobi approach, i.e.

equation (3.3.17). The solution to this nonlinear partial

differential equation will determine the control law, i.e.
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u = u*(t, x). The difficulty is, of course, in solving the

Hamilton-Jacobi equation which is a nonlinear partial dif-

ferential equation. In general this is a formidable problem

and there is no guarantee that the resulting control law can

be implemented in a practical manner.

The Dynamic Programming approach, equation (3.3.13) ,

provides a practical method of solving the Hamilton-Jacobi

equation which at the same time preserves the physical char-

acteristics of the problem and yields some insight. This

technique provides a computational scheme for solving many

optimization problems. When it is applied to a control

problem of the type being considered the results of the com-

putations would be tables of numbers which would specify the

control u as a function of the state variables. A solution

to the synthesis problem which could be instrumented direct-

ly is not provided.

Moreover there is an inherent difficulty which is far

more serious than the ones outlined above. Briefly, the

difficulty arises in that with the above mentioned methods it

is necessary to assume that all of the state variables are

available in order to attempt the synthesis problem. There

is no theory available which would allow incorporating
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constraints which specify which states are available to be

fed back.

It is this practical difficulty which restricts the

applicability of the above methods to the attitude control

problem. Thus a reformulation of the optimization problem,

which incorporates the physical constraints placed on the

attitude control problem, is necessary. This leads directly

to the problem of specific optimal control.

3.5 The Specific Optimal Control Problem

In many practical situations, even if an optimum con-

trol law can be synthesized, it will not be a satisfactory

solution because of the complexity of the dependence of

the optimum control law on the state of the system and on

the time.

Often, the form of dependence of the control law, not

necessarily optimum, on the state is known beforehand except

for a finite set of parameters. The known form depends on

the manipulations that are possible with the available phys-

ical equipment.

In the attitude control problem under investigation the

number of states available for measurement is restricted;

and also the reliability of the controller used to perform
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the objectives of the mission is important.

In order to incorporate these factors, the problem will

be formulated in the following fashion and will be termed

the problem of Specific Optimal Control [3].

Problem Statement

The specific optimal control problem is defined in the

following manner:

Given a plant with dynamic equation of the form

x = _f(x, u) (3.5.1)

where _ is an n=dimensional vector, the state of the system;

u is a scalar, the control function; f is a n-dimensional

vector. More generally, the control function can be an

m-dimensional vector (i.e., the plant would be a multi-input

plant) and f can be an explicit function of time t (i.e.,

the plant is time-varying).

Let the plant be in an initial state

x(0) = C (3.5.2)

Determine the unknown parameters in a control law of the form

u = h(y, b) (3.5.3)
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where _ is a p-dimensional vector which is a known function

of the state x and b is a q-dimensional constant vector of

the unknown parameters to be determined,

of performance of the form

T

(u) = J g(x, U) dtI,

O

such that an index

(3.5.4)

is minimized, where g(x, u) is a scalar valued function of

its arguments and T is the fixed terminal time. More gen-

erally, g can be an explicit function of time t (i.e., the

performance is weighted as a function of time).

The f., i = 1 .... , n, and g are assumed to possess
1

piecewise continuous second partial derivatives with respect

to all of their arguments.

3.6 Proposed Methods o_f Solution

The following methods are proposed for solving the spe-

cific optimal control (SOC) problem;

(i) Parameter Optimization

(ii) Transformation to two-point boundary-value problem

(TPBW)

(iii) Differential Approximation.

All these methods are basically computational techniques

and are equally applicable to both linear and nonlinear systems.
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These techniques are explained below using several examples.

i. Parameter optimization

The SOC problem may be written as follows:

Given

x = F(x, b) (3.6.1)

with x(0) = C , where

_F(x, b) = _f(x, h(y, b)) (3.6.2)

Determine the parameter vector b such that

T

jI(b) = G(x, b) dt (3.6.3)

o

is minimized.

In equation (3.6.3)

G(x, b) = g(x, h(y, b)) (3.6.4)

From equations (3.6.1) and (3.6.3), the SOC problem

may be rewritten in the following way.

Given a fixed configuration system (3.6.1) with q

parameters bl, b_ ..... b and an index of performance which
q

is some continuous function I(b I, bs ..... bq) of the var-

iable parameters, i.e.,
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Z = I(b l, b_, ..., b ) (3.6.5)
q

Specify an algorithm for determining the arguments bl, b_,..,bq

which will minimize the function I by observing the value Z.
l

where Z._ = I(bli, b2i .... , bqi) for a sequence of parameter

settings. The surface defined by (3.6.5) is called the IP

surface (index of performance surface).

The problem of determining optimal search procedures

for locating the absolute minimum (or maximum) of a function

of variables is a difficult problem [4 ]. Even in the case

where _t is known, a priori, that the function is unimodal,

the proboem has been resolved only for functions of one

variable [5].

The systems mechanizing such algorithms to extremize

the function I are called optimizers, automatic optimalizers,

extremal control systems, or hill-climbers. The majority of

the techniques proposed in the literature will work satis-

factorily only if the function I has a single minimum (the

relative minimum problem). Here_ a simple modified gradient

method is presented for the solution of the SOC problem [6 ].

For various other schemes see [7, 8].
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S tepwise Version of Gradient Method

It is desired to move toward a minimum of I by correct-

ing a set of approximations to the values of the b. which
1

make _I/_b. = 0, i = i, 2 ..... q.
1

The corrections are made

by increments proporuional to the negative of the gradient,

i.e., if b, (p) is the pth approximation for b. and %I/@b.
1 1 1

is the gradient at this point with respect to b., then (p41)
1

th

approximation is takenas (for example)

(3.6.6)

b (p+l) = b. (p) __I__I
i l -_b. _ _i' i = i, 2 ..... q

1

where _ _. is a constant and is chosen depending on the
1

amount of correction desired at each step.

Assuming the function I has only one minimum, the n-

dimensional minimization problem can be reduced to a sequence

of one-dimensional minimization problems. The minimum in

the direction i = j is obtained by taking the gradient with

respect to b. and following the gradient until I reaches a
3

minimum. In many cases it is possible to obtain 3 points

such that the minimum lies inside the two extreme points and

then fit a parabolic curve through these points and find the

minimum value of this parabola. The parameter value that

yields the least value for I with the parabolic fit is taken
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as one of the next trial points and the minimization is done

by approximating by another parabola whose minimum is deter-

mined. The procedure is repeated until the desired accuracy

is obtained• In the course of computations it is sometimes

necessary to modify the value of _; as the minimum is ap-

proached.

Example 3.1

Consider a second order plant described by the differ-

ential equations

Xl = X2

- 2xl - 3xa + u

(3.6.7)

Let the initial conditions be

x,(0) = c,

xa(0) = ca

and the index of performance be

(3.6.8)

T

I, (u) = I (x_ a + x._a + ua) dt (3.6.9)
o

Let the desired controller be of the form

u = A x, + B xa (3.6.10)
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where A and B are unknown to be determined so as to minimize

the index of performance I_ (u).

Substitution of (3.6.10) into (3.6.7) and (3.6.9) gives:

i

X l = X_

X_ = --2X, -- 3X_ + AX, + BXs

11 _. 11'1

and

T

I (A B) Min I' = A,B [xx _ + x_ + (Ax_ -, Bxe)a ] dt (3.6.12)
o

I

For a numerical solution, let

C_ = 2.0 , C_ = 2.0 and T = 1.0

Let the initial approximation for A and B be

A = -0.2

B = -0.2

The computer results are as follows:

(i) Initial Approximation

A = - 0.2, B = - 0.2,

(ii) Search for minimum in A direction

A = - 0.052021 B = -0.2

I = 5.19875783

I = 5.11067343
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are

(iii) Search for minimum in B direction

A = -0.052021 B = -0.223471

I = 5.11922168

(iv) Search for minimum in A direction

A = -0.05521 B = -0.223471

I = 5.11018097

(v) Search for minimum in B direction

A = -0.05521 B =.-0.227940

I = 5.11018044

(vi) Search for minimum in A direction

A = -0.05521 B = -0.227940

I = 5.11018044

(vii) Search for minimum in B direction

A = -0.05521 B = -0.226007

I = 5.11017662

Thus, the optimum values of the feedback coefficients

A = -0.05521

B = -0.226007

and the minimum value of the index of performance is

I = 5.11017662.
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For comparison, this specific optimal solution is com-

pared with the open-loop optimal solution•

tion is obtained as follows:

The plant equations are:

The optimal solu-

xs = -2x_ - 3x_ + u

and the index of performance

Min T

x_ (u) = u(t) ]
0 m tmT o

(x_ s 4 x_" + u a) dt

Define the Lagrangian as in (3.3.1)

L = (x_ a + x, a + u')+ kl(x_-x_)+ k_(-2xl-3xs+u-xs) (3.6.13)

The Eular-Lagrange equations are

xl = x8

x_ = -2x_ - 3x8 + ka

k_ = -2x, ÷ 2_s

_s = -2x8 + 3k. - A,

u = -0.5_,

(3.6.14)

The last equation in (3.6.14) is an algebraic relation•

The boundary conditions on (3.6.14) are

I

I

I

,I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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I
X, (0) = C I = 2.0 , xe(0) = C| = 2.0

i
A,(T) = kin(T) = 0 , T = 1.0

i This two-point boundary-value problem (TPBVP) is read-

e ily solved by the quasi-linearization method [Appendix B].

i The performance index for the open-loop optimal control is

i I, (u = u*(t)) = 5. 10841614

i Notice that the index of performance for the specific

optimal system in very close to the index of performance

I for the open-loop optimal system.

I The specific optimal trajectories (xl S, xaS)and
S S S

• u = (Ax, + Bxa ) are compared with the open-loop optimal

I trajectories (xl*, xa*)and u* = u* (t)) and are shown in

I

I

figure 3.1. It is interesting to note that the specific

optimal trajectory matches the optimal trajectory very

closely.

I

I

I

I

The Fortran II program for the IBM 7094 machine for

parameter optimization is given in Appendix H.

ii Transformation to two-point bound arM-value problem (TPBVP)

The parameter optimization method, presented above, for

the type of problems represented by the equations (3.6.1) and

I

I
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I

I

I

I

(3.6.3), i.e.,

_x = _F(_x,_b)

and

x(0) =

(3.6.1)

I

I

I

T

Min j'I(b) = b G_, b) dt (3.6.3)
-- o

is a suitable approach to the solution if the vector b is of

low dimension. However, it is necessary that the boundary

i conditions on (3.6.1) be of the type _(0) = _, i.e., only

initial conditions may be specified. If mixed boundary con-

I ditions are given on the equation (3.6.1), i.e., some at the

initial point t = 0 and some at the terminal point t = T,

then it is necessary to view the problem as a TPBVP.

The basic idea is to consider b to be a part of the

state vector [9]

_b = _b(t) (3.6.15)

Since b is a constant vectoD

= 0 (3.6.16)
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By adjoining the equation (3.6.16) to the equation

(3.6.1) the specific optimal control problem is reduced to

an ordinary problem of minimization of an integral with

differential constraints. The unknown initial conditions

b(0) are determined in the course of solving the resulting

Euler-Lagrange equations subject to the given boundary con-

ditions on the equation (3.6.1) and certain other free

boundary conditions obtained from the transversality con-

dition [Appendix A].

The Lagrangian L is I

L- G_, _b)+ <__,F_, _b)-__ > + <_0 -b>_ (3.6.17) I

where k(t) is an n-dimensional multiplier vector and _(t)

is a q-dimensional multiplier vector.

The Euler-Lagrange equations are

x - E_,_b)

b = 0 (3.6.18)

aF

-._ = -- + 1
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where

i _ _ aG

i.

6G
m

_X m ° ax
n

I

I

I
I

I
I

I

I

I

I-

ooo#

_G

q

m

_x
m

m

_F,

ax,

8F
n

_Ft

8x
n

_F
n
6x

n

(n X n) matrix

a_F_
m

6b

m

_Fs

ab_

_F
n

m

aF,

8b
q

_F

8b
q

i

(n X q) matrix

The natural boundary conditions for this problem are

(as obtained from the transversality conditions)
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x(O) = C _k(T) = 0

/i(O) = /_(T) = 0

(3.6.19)

The set of equations (3.6.18) represent (2n + 2q) ordin-

ary differential equations, nonlinear in general, with

boundary conditions given by (3.6.19).

techniques available in the literature

There are various

for the solution of

TPBVP, e.g. "shooting" methods, gradient methods, and quasi-

linearization [6, i0, ll]. The method of quasi-linearization

seems very promising for the solution of a TPBVP and is ex-

plained in Appendix B. This method is relatively simple

to program and has favorable convergence properties; in

fact quadratic convergence is assured when suitable restric-

tions are placed on the TPBVP [i0].

Example 3.2

Consider a second order nonlinear plant described by

the equations

x = y

y = -(xa-l)y - x + u

(3.6.20)

Let the initial conditions be

I
I

I

.I

I
I

I

I

I

I
I

I

I

I

1

I

I

I
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I

I

I

I

x(O) = c_

y(o) -- c,

(3.6.21)

The object is to find the specific optimal control law of

the form

u = bx (3.6.22)

where b is the unknown constant and x is the only accessible

state, such that the performance index

i 1

I; = I (xa + y8 + ua) dt

I o
is minimized.

Adjoin to (3.6.20) the differential equation

(3.6.23)

b = 0 (3.6.24)

By eliminating u, the specific control problem is reduced

I
I

I

to an ordinary problem of minimization of an integral with

differential constraints.

x - y

The resulting equations are

y = -(x'-l)y - x + bx (3.6.25)

" b = 0
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with the initial conditions

x(o) = c,

y(0) = c,

and the index of performance

1

I _ (xi ÷ yS + b s x a) dt
o

(3.6.2 6)

The Lagrangian for the problem is

L = (xa + y| + b il xil) + k(y-_:) + /_(-xlly + y - x + bx - _,)

where k, p, and _ are multipliers.

The Euler-Lagrange equations for the minimization problem

are

x = y

y = -x°y + y - x + bx

{ = o

= -2x- 268x + 2#xy + p- bp

p = -2y - _. + _x a - p

_ -= -2bx I - _x

(3.6.27)
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I
I

I

I

I

I
i

The natural boundary conditions for the problem are

x(o) = c, ,

&(l) =.(l) = o

{(o) = _(l) = o

y(0) = ca

(3 •6•28)

For application of the quasilinearization method, let the

initial conditions on b(t), k(t), and _(t) be

b(O) = -O.OS

X(O) = 0 (3.6•29)

_(o) = o

Then the initial approximation to x(t), y(t), b(t), k(t),

_(t), and _(t)is obtained by integrating the nonlinear dif-

ferential equations (3.6.27) with initial conditions (3.6.28)

and (3.6.29). (In general, this solution will not satisfy

the terminal conditions in (3•6.28).)

The (r+l)-st approximation is determined from the r-th

I approximation via the relations

i Xr+l = Yr+l
e

i Yr+l = (-2XrYr -

l+br)Xr+ 1 • (-Xr+l)Yr+ 1 + x br r+l

-- X
+ 2x: Yr br r
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br+l = 0 (3.6.30) I

kr+l = (-2 - 2b r + 2_rYr)Xr+ 1 +(2_rXr)Yr+ 1

- (4brX r + _r)br+! + (2XrY r + l-b )_1

- 4XrYr_ r + 4brX r + Prbr

I
I

I
(2PrXr)Xr+ 1 - 2Yr+ 1 - kr÷ 1 -- (x:-l' _r+l-2_rX _

°

-_r+l = (-4b Xr-Pr) 2X_rbr+ 1r Xr+l

+ PrXr

The boundary conditions on (3.6.30) are

Xr+l (0) = C, Yr+l(O) = Ca

Ar+l(O) = Pr+l(1) = 0

- Xr;/r+ 1 , 4br xsr I

I

I

I

(3.6.31) I

_r+l(O) = _r+l(1) : 0 I

The numerical solution of the linear system of equations

(3.6.30) is readily obtained by determining the homogeneous

and particular solutions and appropriately selecting the

constant multipliers for the homogeneous solutions, thereby
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I

I
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I
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!
I

I

I
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constructing a solution satisfying the boundary conditions

(3.6.31).

For numerical solution, let the initial conditions on

the system be

x(O) = e_ = I.o , y(O) = e, = i.o

Only 3 iterations are required for satisfactory con-

vergence in this example. The value of b converges as

follows:

Initial Approximation

First iteration

Second iteration

Third iteration

b = -0.05

b = -0.135108

b = -0. 135743

b = -0. 135744

The specific optimal trajectories (xs, yS) are shown

in figure 3.2.

The feedback coefficient is

b = - 0.13574

and the corresponding value of the index of performance is

l(u = bx) = 1.84932

Systems with time-varying deterministic inputs can be

handled easily as illustrated by the following example.
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I
I

I

Example 3 .,3.-

Consider a plant described by the equation

X = -- X + _ + U (3.6.22)

Let the system be subjected to external time-varying input

(or disturbance) ( of the form

I

I
I

= 0.i Sin 10t (3.6.33)

Let the plant be in an initial state

x(0) = c (3.6.34)

The object is to find the Specific Optimal Control law of

the form

u = b x (3.6.35)

where b is the unknown constant such that the performance

index

1 T
I iI=_ _ (xa + ue )

II o
dt (3.6.36)

is minimized• Here, T is the fixed terminal time.

This problem is easily reduced to a boundary value prob-

l •

lem as outlined in example 3.2. The results are as followsz
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i

Teminal Time Initial Condition Feedback Coefficient

T 0 b

0.5 1.0 -0.21008

1.0 0.5 -0.33454

1.0 1.0 -0.33418

1.0 1.5 -0.33404

S

Figure 3.3 shows the specific optimal trajectory x ,

the external time-varying input ( and the control u = bx S

plus the input ( for two-initial conditions C = 1.5 and

C = 0.5 and the terminal time T = 1.0.

It is interesting to note that the specific optimal

control law, in general, depends on the initial state of

the system and the duration of the process. One is now

forced to ask the question: How does the feedback coef-

ficient b depend upon T and C? This is the so-called sen-

sitivity problem and will be considered later.

iii Differential Approximation

In many situations, it is required to choose the best

controller fron a set of controllers. For example, if two

state variables are available, say x and y, then one has to

consider the several forms of controllers that are easy to

I

I

I
I

I
I

I
I

I

I
I

I

I

I
I

I

I

I
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instrument, e.g. u = bx + cy, u = bx + dx _ ÷ cy, u = bx + cy +

dyS0 etc. The previous two methods, i.e., parameter opti-

mization method and the transformation to TPBVP, may be used

to obtain the specific optimal control laws of the given form

and then select the best out of this set. However, the re-

peated application of these methods will require a considera-

ble amount of programming effort and computer time. The

method of differential approximation is particularly suita-

ble in such cases.

Philosophically, this method is different from the

previous methods. The solution here requires knowledge of

the open-loop optimal solution (u* = u*(t)) in order to

synthesize the closed loop solution. The open-loop optimal

solution consists of the optimal control function u* (t) and

the corresponding optimal trajectory x* (t) which do not

depend on the form of the specific controller. In general,

the solution using this method will result in a slight de-

gradation of performance compared to the previous methods.

However, the computations necessary with this method are

often easier to perform [Appendix C].

Let the optimal trajectory without the specific con-

troller constraint be x*(t) = _(t). Equation (3.6.1) repre-

sents the system equation with a specific controller. It is

!

!

!

.I

I

I

I

I

I

I

I

I

I

I

-I

I

I

I
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easy to see that if there exists a set b such that

_(t) - F(_(t), _b) = 0 (3.6.37)

0 _t _T

then the set b is the optimal parameter set for the specific

controller. However, in general, equation (3.6.37) will not

be satisfied.

Therefore, one intuitively feels that an acceptable

solution may be one which makes the left hand side of equa-

tion (3.6.37) "close to zero", the closeness being defined

in a suitable manner. For example, b may be obtained as

the solution of

T

Nin _ II _(t) - F(_(t) b) I1" dt (3 6.38)
-- O

or

Xin Max II _(t) - F(_(t) b) II (3 6.39)
b 0 _ t _T -- ' -- "

where, in equations (3.6.38) and (3.6.39), II .. II is the

Euclidean norm.

The minimization problem implied by (3.6.38) is often
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easily solved by equating Uo zero the partial derivatives

of the integral with respect to the components of b; this

will yield a sufficient set of simultaneous equations in-

volving the components of b. The solution of this set of

Aqu_ons y_el_s the sn@c_f_ _mml controller

The minimization problem implied by (3.6.39) is more

difficult to solve and will be discussed in Chapter 6 of

I

this report.

E_[ample 3.4:

Consider a second order plant described by the differ-

ential equations

X% = X_

xs = -3xs - 2X_ - 0.5x, s + u

(3.6.40)

Let the plant be in an initial state

xl (0) = Ci

x_ (0) = c_

(3.6.41)

The performance index to be minimized is

T

o

(xl a + xs _ + u 8) dt (3.6.42) l
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where T is the fixed terminal time.

For numerical results, iet

Cz = 2.0

Ci = 2.0

T = 1.0

(3 •6.43)

(i) Open-loop optimal solution

The Lagrangian is

L = (xl m + x, m + u s ) + X(xm - xl)

+ _(-3xa -2x; - 0.5xlS + u - xs)

The Euler-Lagrange equations are

Xl = Xl

xa = -3xs - 2x, - 0.5x, 3

a
). = -2x, + 2_ + 1.5/_ xl

= -2xl - A + 3_

- 0.5#

(3.6.44)

U = -0.5_

The last relation in (3.6.44) is an algebraic relation.

The boundary conditions on (3.6.44) are



69

x, (0) = 2.0

k(1) : _(i) : 0

x_ (0) = 2.0

(3.6.45)

The set of differential equations (3.6.44) with bound-

ary conditions (3.6.45) is solved by the method of quasi-

linearization. Let the solution be u*(t) and x_ = _(t).

The value of the performance index for the optimal

solution is

I(u = u*(t)) = 5.05815351 (3.6.46)

(ii) SOC (u = b xl) :

Let the only accessible state be x = x, and the de-

sired S0C be of the form

u = bx (3.6.47)

Then the problem is to find the feedback coefficient b

such that the solution of the differential equations

or

x_ = X 8

x_ = -3x8 - 2x, - 0.5x, S + bx,

.Q

X * 3X + 2x + 0.5x 3 - bx = 0 (3.6.48)

I

I

I
I

I
I

I
I

I

I
I

I

I

I
I

I
I

I

I
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with the boundary conditions

x,(0) = x(0) = c,

x,(0) = k(0) = c,

approximates the optimal trajectory x*',t).

Here, the value of b will be picked such that

T

o

(_ + 3_ + 2.0 * 0.50 s b@) s dt (3.6.49)

is minimized with respect to b.

I

I

I

The minimization of the integral in (3.6.49) with respect

to b results in the equation

T T

b( .0s dt) = ( (_ + 3_ + 2_ +

o o

0.5_ 3 )_ dt) (3.6.50)_

Consider the quantity in the parentheses in the integrand

on the right-hand side of (3.6.50). The following relation

is true:

| _ + 3_, + 2,0 + o.5.0_ = u*(t)

Thus

I

I

I

T

u*(t) @(t) dt
o

b = (3.6.51)
T

_ (t) dt
o
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The value of b for the initial conditions given in

(3.6.43) is

b = 0.039054

and _-value _f th - -o_m,,_A index _c

I(u = bx l) = 5. 10033399

S S
The specific optimal trajectories (x, , xs ) are com-

pared with the optimal trajectories (x**, xs*) and are shown

in Figure 3.4.

Xt is interesting to note that the specific optimal

trajectory matches the optimal very closely. The percen£age

deviation in the index of performance with respect to the

optimal solution is

I(u = u*(t)) - I(u = bx)
I(u = u*(t)) _ i00

0.8_

This indicates that in an engineering problem of th_s

type an SOC of the form u = bx is sufficient. Moreover, this

type of control is extremely simple to realize compared to

the optimal control function. It is possible in some cases
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to obtain better overall performance using an SOC as compared

to the optimal because of the instrumentation problems in i

realizing the optimal control function. I

(iii} SOC (u = bx, + cxm_) :

I
Let the only accessible state be x = x I, and let it be

desired to determine how much improvement over the performance I

obtained above can be achieved by using a nonlinear control-

ler, say of the form u = bx, + cx_ . I

Here, the values of b and c are obtained such that I

T
I
J
o

(_ + 3_ + 2_ + 0.5_ "I - b_ - c_ s) _ dt

is minimized.

Notice, again

(3.6.52) I

I
I

+ 3_0 + 2_ + 0.5_ s = u*(t)

Thus (3.6.52) reduces to

T

Min _ (u*(t) - b_ - c_S) s dt (3.6.53)
b, c

o

The minimization results in the following set of linear

equations:

I
-I

I
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T T

o o o

u*(t) @(t) dt

(3.6.54}

T T

o o
@6(t) dt) c = IT u*(t)_ (t)dt

o

The solution of this set of equations yields

b = 0.287247

C = -0.068932

for the same initial conditions as in (ii), and the value

of the performance index is

I = 5.08265859

The percentage difference between this value of the

index of performance and the optimal value is

l(u = u*(t) - I(u = bx, + cx,')

I(u = u*(t))
I00

_0.5_

The improvement in the performance compared to the SOC

u = bx, is very small.



75

(iv) SOC (u = bx, + cx_):

Now suppose that the second state x. ( = x)is also

accessible and it is desired to build a controller of the

form

u = bx I + cx8

This leads to the minimization of the integral

T

Minb,c
o

(u*(t) - b_(t) - c_(t))" dt (3.6.55)

The values of b and c are obtained as outlined above,

b = -0.046133

c = -0.178149

and the value of the index of performance is

I = 5.06101251

The percent deviation of this index of performance from

the optimal value is

I(u = u*(t)) - I(u = bx, + cxa)

1(u : u*(t))
x i00

O.O6%

I
I

I

I
I
i

I

I

I
I

I

I

I
I

I
I

I

I
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!
This solution is very close to the optimal solution.

| s s
The specific optimal trajectories (x I , xs ) for the

i controllers u = bx_ + cx_ s and u = bx I + cxs are very close

i to the optimal trajectories and are about the same as shown

in figure 3.4.

i The different controls, i.e. u*(t), u = bx I, u = bx I + cxl s

i and u = bx I + CXs, are shown in figure 3.5.

It should be mentioned here that once the optimal solu-

i tion to the problem has been obtained, different types of

i controllers which are easy to instrument can be obtained

with little additional computation using differential approx-

i imation.

i The methods of parameter optimization and transformation

to TPBVP require an initial approximation for the unknown

i coefficient vector b and the convergence of these schemes

i depends on a good initial guess. One may try to combine the

advantages of these techniques. For example, differential

i approximation demands very little machine time but gives

i only an approximate answer which may be used as an initial

i guess for the quasilinearization scheme. The quasilinear-
ization method is an accurate technique with quadratic con-

i vergence properties, however it involves relatively long
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computing times.

For example 3.4, the quasilinearization (Q.L.) and

differential approximation (D.A.) are combined in the fol-

lowing manner-

(i) Find open-loop optimal solution0 i.e. solve the TPBVP

(3.6.44) by Q.L.

For SOC u = bx I, find b by D.A., then apply Q.L. for(ii)

more accurate solution.

(IXI) Repeat part 2 for SOC u = bx, + cx, _ and u = bx, + cxs.

For the initial conditions (3.6.43), the results are as

fo 1lows :

(i) Open-loop optimal solution.

I(u = u*(t)) = 5.0581535

(ii) SOC (u = bx_):

D. A. scheme

b = 0.039054

Q. L. scheme

b = 0.039605

(iii) SOC (u = hx I + cx, s) :

D. A. scheme

b = 0.287247

I = 5.0826586

I = 5.1003339

I = 5.1003334

c = -0.068932
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Q. L. scheme

b = 0.289593

I = 5.0826567

(iv) SOC (u = bxl + cx,):

D. A. scheme

b = -0.046133

I = 5.0610125

Q. L. scheme

b = -0.046353

I = 5.0510125

c = -0.069367

c = -0.178149

c = -0.178814

This indicates that the D. A. solution in many cases

should suffice unless a very accurate solution is desired.

A listing of the complete FORTRAN program, consisting of

a main program and the derivative subroutines is given in

appendix H.

3.7 Sensitivity Analysis

It was indicated in the examples that the feedback co-

efficients in the specific optimal controller depend on the

boundary conditions on the state variables and the duration

of the process. For satisfactory implementation of the SOC

controller, it is desirable that this dependence should be the

I

I

I
I

I
I

I
I

I

I

I

I
I

I
I

1

I

I
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I

I

I

I
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least possible. The study of this dependence is called the

sensitivity analysis.

In different cases, different aspects of sensitivity

analysis may be of interest. In example 3.2, the feedback

coefficient b depends on Cs, Cs and T. If the variations

in these boundary conditions are small, it may be of inter-

est to find the partial derivatives of b with respect to C s,

Cs and T. Such an analysis can be made using the classical

perturbation techniques [12]. In other cases, if the ini-

tial conditions can take values from a set (normally bounded)

then it is desirable to study the variation of feedback

coefficients over this set. For such studies, the invariant

imbedding technique [13, 14] is often useful•

The variation of the feedback coefficients in the SOC

problem also depends on the number of states available for

manipulations• This is indicated by the following example.

Example 3.5

Consider the plant described by the equation

_ _ 3x + 2x = u

or in state variable form
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X l = X_

(3.7.1)

xs = -3xa - 2x I + u

The performance index to be minimized is

° I
II = f (Xl 8 + Xa" + Us) dt (3.7.2)

O

Let the plant be in the initial state

x_ (0) = c,

x_(0) = c,

(3.7.3)

The optimal trajectory for this problem is readily ob-

tained by solving the canonic equations (equations (A.4.23)

and (A.4.24) in appendix A). The optimal control function

is

-2.236t
u*(t) = -0.235(C_ + Ca) e (3.7.4)

and the corresponding optimal trajectory is

-2.236t
x_* = -0.81(Ci÷Ca) e

-2.236t
xa* = 1.81(C,+Ca) e

-t
+ 0.81(2.236 C l+ Ca) e

(3.7.5)

-t
- 0.81(2.236 CI+Ca) e

I

I

i

I

I
I

I
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I
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If both the states are available, and since the plant

is linear with quadratic performance index, it is possible

to write the control function (3.7.4) as

U* = -0.235X l - 0.235x s (3.7.6)

In this case the feedback coefficients are independent

of the initial conditions C I and Cs.

However, if only one state is available and the desired

SOC is of the form u = bx x then by the differential approxi-

mation method, find b as

b Ix + 3x + (2-b)x] a dt (3.7.7)
0

This minimization results in

b = - (0"ina + 0.14n + 0.024) (3.7.8)

(0.877n s + 0.4396n + 0.0693)

where n = C,/Cs. Figure 3.6 portrays the dependence of b

on the ratio n. The value of b is fairly constant except

in the range where C,/Ca is small. This type of behaviour

one would expect since the variable fed-back has relatively

small magnitude compared to the second variable.
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Example 3.6

Consider the same plant as in example 3.5, i.e.

i X;t = Xm

_= = -3x= - 2x I + u

with the initial conditions

xl (0) = Ct

x= (0) = C,

I

I

I
I

Let the performance index to be minimized be

i
Il = _ (XtS + X= = + Ua) dt

II o

84

m

I

I

I
I

I

I

I
I

I

(3.7.9)

(3.7.lo)

Let xI be the only available state and let the initial

conditions be in the range -2 to 2.

If the initial condition on x= is unknown and it is

assumed that C= can take values from -2 to 2 with equal like-

lihood, then it may be desirable to study the variation of

the feedback coefficients for different values of C I , taking

C= = O.

For the SOC u = bx I the feedback coefficient b turns out

to be a constant and equal to 0.024502 for IC, I _ 2 and

C= = 0. If an improvement in the index of performance is
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desired, consider an SOC of the form u = bx I + cxlS° In

this case b is constant again and is equal to 0.210114 but

c depends on the value of Cl as shown in figure 3.7. This

type of behavior for c results because when C I is small

(less than 1), _s is very small and a large value of feed-

back gain c is necessary to get any contribution from the

_I s term. Since the improvement in the index of perform-

ance is not significant, it is obvious that the u = bx I + cx l

controller is not satisfactory compared to u = bxl.

3.8 Conclus ion s

The space age optimum control problems are so complex

that it becomes necessary to incorporate limitations on the

measurements and restrictions on the controller for relia-

bility and physical realizability in the optimization prob-

lem. The specific optimal control formulation is one way of

attacking such problems. It was shown that deterministic

disturbances can be taken care of in designing the control-

ler. To make the SOC approach more meaningful, a study of

systems with unknown disturbances is highly desirable. If

some characteristics of the disturbances can be obtained, it

may be desirable to design a specific optimal controller for

the worst case disturbances.
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It was pointed out that the sensitivity problem for

SOC is of importance.

problem were presented;

Some numerical approaches to this

however, it is highly desirable

to develop analytical tools to study such problems.
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CHAPTER 4

BOt_DED CONTROL PROBLEMS

4.1 s.ua_arY

In this chapter the optimum control problem involving

constraints on the control variables is discussed. A brief

summary of existing methods to solve bounded control prob-

lems is given. The necessity of producing the optimum con-

trol function in these problems is explained, and a compu-

tational algorithm using "approximation in policy space" for

obtaining the control function is proposed. This algorithm

is applied to a number of examples including the space vehi-

cle attitude control problem. Future research and investi-

gations are outlined.

4.2 Introduction

A number of examples can be given in order to illustrate

a typical bounded control problem. Consider, for instance,

the problem of controlling the attitude of a space vehicle.

The space vehicle dynamics can be represented by a set of

six ordinary differential equations of the form
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.__ = _f (_._, (_, u) (4.2.1)

__ =S (9, __)

where f and H are vector functions of the states _9 and __.

e._ 'i_ 4-'hA :_nrtllllt" -J_l_,.',44-,L, _y_r,4-_r ev 4-'h_ 1_..,11,-_" _nrrl,_ _r_r,.ll-_Y-

and u the control torque vector.

The object is to synthesize a control law which will

transfer the space vehicle from any initial state to a de-

sired final state in a way such that a performance measure

is extremized. Also in attitude control problems an addi-

tional restriction is that the magnitude of the components

of the control input u be bounded due to the physical re-

striction that the jets can deliver only a certain level of

torque. This added constraint on the control usually makes

it more difficult to obtain the solution. In order to il-

lustrate the various methods which exist to solve the bounded

control problem it is best to formulate the problem in gen-

eral terms.

4.3 Methods of Solution [5,17,21,24,15,App. A]

Let the dynamical system under consideration be repre-

sented by the following first order vector differential

equation of the form

I

I
I

I
I

I
I

I

I
I

I

I

I
I

I
I

I

I
I
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i _: : f(t, x, u) x(o) : x
--0

(4.3.1)

i ' where x is the n-dimensional vector state

I

I

I

I
I

and u is the m-dimensional vector control

Constraints on the control are usually of the form

Elj & uj • K2j
j = 1,2,'-" m (4.3.2)

Consider the performance measure to be of the type

T

o

g(t, x, u) dt (4.3.3)

where g(t, x, 2) is a non-negative scalar function of its

arguments. T, the duration of the process, will be con-

sidered to be fixed. The object is to find _ such that

(4.3.3) is minimized subject to (4.3.1) and (4.3.2). The

following methods can be utilized to solve the above problem:

(i) Dynamic Programming

(ii) Hamilton-Jacobi Equation

(iii) Calculus of Variations

(iv) Pontryagin's Maximum Principle

In order to illustrate the methods (i) to (iv) above

consider the simple scalar example given below. Let the

system be governed by the equation
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= ax + u

with x(O) =

The constraint on u is

x
o

(4.3.4)

lUl _ 1 (4.3.5)

The performance measure to be minimized is

T

(x" + u s ) dt (4.3.6)
o

(i) Dynamic Proqramminq [5,15,18,26 ]

To solve the problem as defined by (4.3.4),(4.3.5) and

(4.3.6), consider the class of processes of the variational

problem of arbitrary initial state C and initial time r. In

other words one wishes to minimize the functional

T

I(u) = [ (x s + u a) dt

T

(4.3.7)

with x(r) = C

The functional I(u) subject to (4.3.4) and (4.3.5) can

be thought of as the cost of the process which clearly de-

pends on C and 7 and u(t), t f [T, T]. The minimum of I(u)

over all allowable u depends only on C and r. Hence define

the value function
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j(c, T) _ .in If(u)] (4.3.8)
lul_l

Applying Bellman's principle of optimality, One obtains

Min r(C s + uS)L& + _C + aC, I" + L)I (4.3.9)J(C, I')

lul_lL

The terminal condition becomes J(C, T) = 0 from (4.3.8).

The recurrence relation (4.3.9) can be solved by search tech-

niques and one can in principle obtain the control law, i.e.

u = u(t, x). The main difficulty in this method is the

'curse of dimensionality' [18] which for higher dimensional

problems makes the solution impossible.

(ii) Hamilton-Jacobi Equation [I]

The Hamiltonian for the problem is

H(x, k, u) _ ku + Aax 4 (x_ i u_) (4.3.10)

where k is the multiplier.

defined exactly as in equation (4.3.8) to be

T

Min _i't (xs ÷ us ) dtJ(x, t)

lul_l

The value function J(t, x) is

(4.3.11)
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A slight change of notation is evident when equations

(4.3.8) and (4.3.11) are compared. The value function in

eq. (4.3.11) is associated with the cost of a process start-

ing in state x at time t.

The Hamilton-Jacobi Equation for the problem is

_-_J + H* (x, k) (4.3.12)
_t

where H* is the Hamiltonian which has been minimized with

respect to u. The multiplier _ can be written in terms of

I
I

I
J as _ = _J/_x (generally _ = v J)

x

The u which minimizes the Hamiltonian is then,

1 _ 1 _J I ,I
2 Ox 2 _x I

u* = (4.3.13)

I

I
I

Hense,

where

I Isgn - 2 _x 2 _x

H*(x _J)= _(_x' x)+ x _ (4.3.14) I
' _x

_(_x' x) _J u* - u*_ + _J I
- _x _x ax (4.3.15)

From (4.3.14) , one can rewrite (4.3.12) as
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_-_J _J x) + x" = 0 (4.3.16)

The boundary condition for (4.3.16) is

J(T, x) = 0 (4.3.17)

from the definition (4.3.11). The solution of the partial

differential equation (4.3.16) subject to the condition

(4.3.17) will provide the control law, i.e. u = u(t, x).

Equations (4.3.16) and (4.3.17) are very difficult to solve

in general and analytical solution is almost impossible.

(iii) Calculus of Variations [21,24]

To attempt a solution via the calculus of variations

one transforms the inequality constraints of u to an equal-

ity constraint. This is done in the following fashion.

Define an auxiliary variable z such that

z9 = I - um (4.3.18)

The Lagrangian of the variational problem is

L = xe + us + k_(ax + u- x) + k,(l-ua-z a) (4.3.19)

where k, and ka are Lagrange multipliers.

The associated Euler equations are
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x = ax + u

_l = -l, - 2x

0 = l, + 2(l-Xs)u

0 = 1 - u s - zs

0 = ha z

The boundary conditions are x(0) = C, k1(T ) = 0.

The analytical solution of (4.3.20) along with the

boundary conditions is quite impossible in general and one

must resort to numerical techniques in order to obtain a

solution•

(4.3.20)

(iv)

The Hamiltonian for the problem is

Pontrvaqin' s Maximum Principle [21,24 ]

H _= kax + ku + x" + u s (4•3.21)

The associated canonic equations are

where u* is obtained by minimizing the Hamiltonian with

respect to u over the interval 0 • t • T. Then u* is

(4.3.22)

u _ _-

__x l_xl• 12 12

\2/ 121

(4.3.23)

I

I
I
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I

I

I

I

I

.I

.I

I
I

I
I

1

I

I

I



96

One of the boundary conditions for (4.3.22) is x(0) = C;

the other one is obtained from the transversality condition

for the variational problem and is A(T) = 0. The solution

of the two point boundary value problem (4.3.22) provides

the control function u = u* (t). In many cases the elimina-

tion of u* from the canonic equations (4°3.22) is difficult

since u* may not be explicitly determined in terms of k and

x using the maximum principle. Even when u* can be elimin-

ated, one faces the formidable task of solving a two point

boundary value problem.

From the foregoing explanation of existing methods, one

finds that it is indeed difficult to produce the optimum u,

either as a control function or control law even for the

simple scalar example. In order to overcome these diffi-

culties, it is apparent that one may have to resort to spe-

cific controllers.

I 4.4 Specific Control [7,8,27]

In proposing a specific control for any problem, the

I-
choice is dependent upon the ease of instrumentation, cost

of controller and the number of accessible states. The final

design will rely heavily on the type of performance obtained,
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for example the difference in performance index value from

the optimal. In such a design one has to realize that com-

promises have to be made when one has to decide between two

conflicting interests. It should be noted that for the

bounded control case, the specific controller should also

satisfy the constraints on u.

Consider the same scalar example as in section 4.3.

A specific controller that one may propose can take the

form

u = sat (ax) (4.4.1)

ax laxl _ 1
r

where sat (ax) =. _sgn(ax) laxl a 1 (4.4.2)

It is seen that (4.4.1) satisfies the constraints on u,

and one wishes to find the unknown parameter "a" so as to

minimize the performance measure given by (4.3.6). One of

the methods by which the optimum "a" can be found is by

parameter optimization. A number of techniques are availa-

ble for doing this [5,7,8].

A different approach could be taken in proposing speci-

fic controllers. One can change the "hard constraint" on

the control to a somewhat equivalent "soft constraint."

I

I

r

I

I

I

I

I

I

I

I

r

I

I

I

I



I

I
I

I

I

I

I
I

I
I

I

I
I

I

I-

I
I

I

98

This is done as follows. Remove the inequality constraint

(hard constraints) on u. Impose a heavy penalty in the

performance measure for deviations from the hard constraint.

For example the performance measure given by (4.3.6) is

changed to

T

f
o

(x s + u m + _u 2N) dt (4.4.3)

where a is a large positive constant and N a positive integer

greater than unity.

Now along with (4.4.3) one can propose an unconstrained

specific control of the form

u = bx (4.4.4)

Due to the weighting on u which imposes a heavy penalty

whenever the magnitude of u exceeds unity in (4.4.3) one can

intuitively expect that the optimum u obtained by minimizing

(4.4.3) to be almost constrained within the bounds. The

problem now has been reduced to the SOC problem of Chapter

3 and the solution can be effected by any one of the methods

given therein. The choice of values for u and N will depend

to a large extent on the loss of performance and the magni-

tude of violation of the constraints on u which can be tol-

erated.
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Before any synthesis procedures for these specific con-

trollers are attempted one clearly sees the necessity of

obtaining the optimal solution so that one would have a

"yardstick" for comparison in design• As seen from section

4.3, the optimum solution is quite difficult to obtain an-

alytically. Hence, one has to look for effective computa-

tional algorithms in order to obtain the optimal solution.

One such algorithm will be discussed in the next section•

4.5 Approximation in Policy Space [15,18,26,28 ]

Consider the general set of system equations

x = _f(t,x, u) (4.5.1)

with x_u; = x
-- ".D

Let the constraint on u be of the form

JuiJ _ u (4.5.3)

The performance measure to be minimized is

T

.[
o

g(t, x, _) dt (4.5.3)

and T is fixed.
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To solve this variational problem one writes the Hamil-

tonian as

H(t, x, u, _) = (A, _f> + g(t, x, u) (4.5.4)

where k is the n-dimensional multiplier vector.

ciated canonic equation are

x

!
k

The asso-

= _f(t, X, U*)

= -- H
--X

(4.5.5)

where u* is the u which minimized the Hamiltonian at each

instant of time over the interval 0 • t • T and H* is

I.

H(t, x, u*, _).

In (4.5.5)

I H* = < 8H* all*

_H*

n

!
The boundary conditions are

I x(0) -- x , k(T) = 0 (4.5.7)

. from (4.5.1) and the transversality condition of the varia-

!

!

tional problem.

The algorithm proposed utilizes the following procedure.

!

|
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o
Choose an initial guess on u denoted by u and solve the

TPBVP given by (4.5.5) and (4.5.7), obtaining initial solu-

o
tions for x and k °, respectively. Now utilize the Maximum

Principle and minimize (4.5.4) with respect to u to obtain

the first approximation u x . This approximation is utilized

to produce the trajectories x _ and _x using (4.5.5) and

(4.5.7).

This process is repeated until convergence results, and

u*(t) is produced along with the optimal trajectory x*. The

minimization procedure is computationally very simple as the

search procedure has only to scan over a bounded set of u

values due to constraints on u given by (4.5.2). As the

procedure involves an initial guess on u, the "policy", and

successive approximations on it, it is called "approximation

in policy space."

In order to illustrate this method consider the follow-

ing simple example.

Sxample 4.1

Consider the second order non-linear plant with a time

varying input described by

x_ = xs

Xa =-3xn - 2x_ - 0.5x, s

(4.5.8)

+ 0.i sin 10t + u

I

I
I

I
I

I
I

I

I

I
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I Let the initial conditions be

I

I

x_ (0) = C_

xm (0) = Ca

(4.5.9)

I

I

The performance measure to be minimized is

5

(' + _ Ua) dtXl Xs +

O

(4.5.10)

I
The constraint on u is

I
lul <I (4.5.12)

I
The Hamiltonian for the variational problem is

I • H = (x_ s + Xa a + Ua) + klXa + ks(-3Xa - 2Xl - 0.5X, s

+ 0.i sin 10t + u)

The canonic equations are

XI = Xm

(4.5.12)

Xa = -3Xa - 2X, - 0.5X, s + 0.i sin 10t + u*(t)

A, = -2x, + 2k9 + 1.5kax, 8
(4.5.14)

is = -2xs - k, + 3h
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The boundary conditions are I

x,,0)o, (5)=0 m
(4 s.15)

x,(0) = c, l,(s) = 0 m

The Hamiltonian being a minimum for u* implies that I

-_ _, for i-fl• 1

u.-- ÷ 1 for _ <- 1 C45.16_
!

Aa

- for -_ > 1 I

In many cases it might not be even possible to represent u*

as a function of multipliers kl and k_.

The solution to this problem is obtained in the follow-

ing manner.

If one has the current approximation to u*(t) denoted

by Un(t), the corresponding functions Xln(t), X2n(t), kln(t),

k2n(t) are found as explained previously, and the next ap-

proximation Un+l(t) is found by a search method or from an

analytical expression.

The basic plan involves using quasilinearization for

solving the two point boundary value problem.
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Xl,n = X2,n

x2, n = -3x2, - 1.5x I x 1n - 2Xl,n ,n-i ,n

- x s + Un(t) + 0.i sin 10tl,n-I

{ =-2_ 1 + 2_.2, , 1.5x_ x1l,n ,n n ,n-I ,n-i

+ 3_2,n_ 1 Xl, n - 312,n_ 1 Xl,n- 1

12, n =-2x2, n - _l,n + 3_2,n
(4.5.17)

with the boundary conditions

Xl.n(0) = c,

(0) = c,
X2,n

Al,n(5) = 0

12,n(t) = 0

I

I

I

I

I

I

for the determination of Xln, X2n, lln' _2n" In equation

(4.5.17) u is the current approximation and is to be thought
n

of as being a fixed function of time while solving the

quasilinear equations. Notice that an initial approximation

on u (t) is necessary to start the iterative calculations.
O

The _ _l)-st approximation to u*(t) could be found

either by a search of
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Min [ua + k2n u] , u = K, _,
U

(4.5.J8)

or by the analytical expression (4.5.16).

_ the _,,m_4_1 ._I_,_4_ I_ _ 4_4_1 _1 C__n_

be

x_ (0) = 5.0 x, (o) = 8.o

The numerical procedure explained above is now applied, and

convergence to the solution of the original problem occurs

in 3 iterations• The system trajectory x*(t) and the con-

trol u*(t) are given in Figures 4.1 and 4.2 respectively.

4.6 R_e.su!ts a!%d ComParisons [App. I]

In this section, a few selected examples are considered

and the comparative results are illustrated.

Example 4 _2

Consider the simple linear system of the form

I

l

I

I

I

I

I

I

P

X 1 = X 8

xa = -2x, - 3x8 + u

(4.6.1)
.I

The performance measure to be minimized is

1

(xl s + x, s + u') dt
O

(4.6.2)
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FIGURE 4.1

Optimal trajectory x* for Example 4.1
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FIGURE .4.2

Optimal Control u*(t) for Example 4.1
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with the constraint on u being

lul • 1 (4.6.3)

In figures 4.3 and 4.4, the performance of this system

for two different specific controllers is given for the

initial conditions x,(0) = 5.0, xB(0) = 8.0. Also the op-

timal trajectory _* and control u* are plotted for compari-

son.

The two types of specific controllers are (i)

u = sat(ax, + bxa) [the sat function is defined in (4.4.2)]

(ii) u = bx, along with the soft constraint in the perform-

ance measure of the type

1

(x, a x_ a um u4 ) dt+ + +

o

The values of the performance indices corresponding

to the two types of controllers are as follows.

(i) u = sat(ax, + bx,)

P.I. = 42.3847

a = -0.0418

b = -0.2007

(ii) u = bx, _long with the soft constraint

term in the inte_rand of the redefined performance index
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of the form

1

J" X I +Xs + U a + U 4) dt
a

( a

o

P.I. = 42. 7768

b = -0. 0403

It is to be pointed out that P.I.'s for (i) and (ii)

are calculated using (4.6.2) even though the solution for

(ii) uses the idea of soft constraint as given above, so that

comparisons are compatible. The optimum performance index

for this problem is

P.I.* = 42.3790

It is quite apparent that specific controller (i) is

superior to (ii) as far as performance in concerned, but as

pointed out earlier, the final choice of controllers can be

made only after weighing the various factors, such as cost,

simplicity of instrumentation and performance. It is also

intuitively evident that (i) should be better than (ii)

since information about both the states is utilized by the

specific controller in (_ r!]*e programs utilized to pro-

duce the different :_ _ are listed in Appendix I.
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Example 4.3

Consider now a non-linear system of the form

Xl = Xll

xl : -2x, - 3xl - 0.5xl s + u

(4.6.4)

The initial conditions are

x, (o) = 5.0 x, (0) = 8.0

The performance index to be minimized is

I
(x,g + x," + u') dt

I o
and u is constrained by

(4.6.5)

lul 1 (4.6.6)

The same controllers used in Example 4.2 are considered and

the results are given in Figures 4.5 and 4.6.

The performance indices and the parameters of the con-

trollers are

(i) u = sat(ax I + bxa)

P.I. = 52.8778

a = -0.0212

b = -0. 1431
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(ii) u = bx, along with a performance index incorpor-

ating the soft constraint of the form

1

x I + u_ + u s + ) dt
2 2( U 4

O

I
I

I
P.I. = 53.4632

b = 0. 17425

The optimal performance index is

P.I.* = 52.8735

I

I
I

Example 4.4

In this example consider the system of equations which

governs the rotational motion of a rigid body such as a

space vehicle about its center of mass. The equations of

motion are

I,_, = (Ia - I.) _ o% + rl

I_'8 = (Is - I,) _s _, 4 r3 (4.6.7) I

where

_. = angular velocity about the i-th principal
1

axis

I. = the moment of inertia about the i-th prin-
1

cipal axis

I
I

I
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• = control torque on the i-th principal axis

The constraints on the control torques are derived

from the condition that the jets can only deliver a certain

level of torque in the case of a space vehicle.

The constraints can be expressed in the form

jTil _ T i (4.6.8)

From the equations (4.(._ and (4.6.8) the attitude con-

trol problem of a space vehicle can be posed as follows.

Equation (4.6.7) represents the motion of the space vehicle

just after launching (while tumbling) and (4.6.8) the con-

straints on the attitude control jets. The objective now

is to find the appropriate torques along the principal axes

such that a certain performance measure is minimized. This

measure should be one that weights the angular velocities

as well as the energy expended in reducing these velocities

in a fixed amount of time. This amounts to slowing down the

space vehicle to low angular velocities where linearizations

can be made and appropriate linear controllers can take over

the task of controlling the attitude accurately.

For this example, let
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Then the equation (4.6.7) becomes in terms of the angular

momenta (Yi = Ii_i)'

y, = -0.025y, ya + u,

Ya = u.uI3ysY, + ua

Ys = -0.05 y, ye + us

The performance criterion used will be a fixed time,

minimum energy type as given by

T

(y%m + yaa + ysm + ulS + u,a + usQ)dt
o

(4.6.1o)

The constraints on u I , us and u s are taken to be

luil _ I , i = i, 2, 3 (4.6.11)

For this example, the time is fixed to be i, and the

optimal trajectories Yl* (t) , Ya* (t) , Ys* (t) and the optimal

controls u**(t), ua*(t), and Us*(t) are given in Figure 4.7

for the initial conditions y1(0) = 10.0, ya(0) = 8.0, and

Y3 (0) = 6.0. It is to be noted that the optimal solution

produced here is expected to act as a "design standard" when

specific controllers are designed and their relative merits

can then be evaluated.

I

I

I
I

I
I

I

I

I
I

I

I

I
I
I

I

I
I

I
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Rema rk s :

In Example 4.2 and 4.3, specific controller (i) is

found by the simple gradient technique described in Chapter

3 for parameter optimization and the computational algorithm

is given in Section 3.6, and the program used is listed in

Appendix I. For specific controller (ii), the quasilineari-

zation method of solving TPBVP as explained in Appendix B is

utilized and the program used is listed in Appendix I. The

programs for producing the optimal solutions to examples

4.2, 4.3 and 4.4 are also given in Appendix I.

4.7 Conclusions and Future Work

A computational algorithm for producing the optimal

control function _*(t) in a bounded control problem has been

proposed and illustrated. The need for producing _*(t) is

for the reason of obtaining a "standard" or "yardstick" for

comparison purposes. Two kinds of specific controllers have

been suggested and comparisons are made with the optimal

solution. The attitude control problem which is of interest

to JPL has been posed and the solution by this algorithm has

been presented.

Once there is a design standard, a number of specific

controllers can be proposed for these problems and their

I

I

I
I

I
I

I

I
I

I

I

I
I

I
I

I

I
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relative merits ex_ined. The extension of this method has

to be considered for free time and time optimal problems.

The approach to be taken in these cases would be one of

"digital experimentation" taking into account all available

I

information from the analytical fox_ulation of the varia-

tional problem. This means that emphasis will be given to

numerical solutions of the various problems in order to pro-

duce a series of useful computational algorithms.
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CHAPTER 5

STATE ESTIMATION FOR NON-LINEAR SYSTEMS

5.1 Summary

The problem considered in this chapter is the sequential

estimation of states and parameters in noisy non-linear sys-

tems. The class of systems considered are those in which the

dynamical behavior is described by an ordinary differential

equation. No statistical assumptions are required concern-

ing the nature of the unknown inputs to the system or the

i measurement errors on the output. For estimation purposes a

least squares criterion is used. The new feature of the

I approach presented is that a sequential least squares estima-

tor is obtained for the class of problems considered. This

estimator could be implemented in real time. Experimental

results from several examples indicate that the proposed

estimation scheme is feasible.

The feasibility of using the estimated state, as pro-

duced by the sequential estimator, for control purposes is

then investigated. The problem considered is the following:

starting with arbitrary initial angular velocities on the
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body axes of a space vehicle, synthesize control signals,

based on noisy measurements on one angular velocity, which

will force the three body angular velocities to zero. The

results of computer experiments indicate the possibility of

accomplishing angular velocity reduction in a space vehicle

using only one rate gyro.

5.2 Introduction

The sequential estimation of states and parameters in

noisy non-linear dynamical systems is of interest not only

in automatic control but also in other areas of engineering

where the system identification problem requires the process-

ing of large quantities of data.

The class of problems considered will be those in which

the dynamical behavior of the system is described by an or-

dinary differential equation. No statistical assumptions

are required concerning the nature of the input disturbances

or of the measurement errors. The absence of statistical

assumptions corresponds closely to the physical situation in

many practical problems, as the determination of valid statis-

tical data concerning disturbances is in itself a difficult

theoretical and practical problem.

I

I
I

I

I

I

I
I

I

I
I

I
I

I

I
I

I

I
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The criterion that will be used for estimation is the

classical least squares method. The motivation for using

this criterion is historic precedent, as a least squares

approach has been used explicitly and implicitly on many

estimation problems with success since the tin e of Gauss.

If valid statistical data concerning the disturbances are

available then this approach will not necessarily be the

best one.

The usual classical approach to least squares estimation

leads to non-sequential estimation schemes. The basic ob-

jection to a non-sequential estimation scheue, when applied

to a dynamical system, is that each time additional output

observations are to be included, then the entire least squares

calculation must be repeated. In general, the time required

to perform this calculation increases with the number of

measurements.

The new feature of the approach presented is that a

sequential least squares estimator is obtained for the class

of problems considered; this estimator could be implemented

in real time.

In the formal derivation the minimization of the inte-

gral of the weighted, squared, residual errors is converted
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to a Lagrange problem in the calculus of variations. The

Euler-Lagrange equations for this problem are written using

Pontryagin's maximum principle [21,24]. The sequential na-

ture of the estimation proDlem is then brought out by imbedding

the resulting two point boundary value problem (TPBVP) in a

larger class of TVBVP's using invariant imbedding techniques

[29]. A non-linear partial differential equation results

from the imbedding. Using an approximation procedure the

sequential estimator equations are derived. L

The resulting estimator equations, except for an addi-

tional term, are precisely the equations obtained by Bellman,

Kagiwada, Kalaba and Sridhar [30] who consider the more re-

strictive problem in which only observation errors are allowed.

The method of derivation here is quite different from the I

one used in reference [30] which is inapplicable for the

problem considered in this chapter, i

In the literature the usual approach to estimation prob-

lems of this type assumes that the disturbances are gaussian

white noise of known statistics. Under these assumptions

Bryson and Frazier [31] derive a TPBVP and Cox [32 ] derives

a somewhat similar set of estimator equations using dynamic

programming.

I

I
I

I
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A number of computer experiments were performed in order

to test the feasibility of the proposed sequential least

squares estimator. Experimental results are given for (1)

the problem of estimating the three angular velocities of a

rigid body rotating about its center of mass given noisy

measurements on one angular velocity and (2) the problem of

estimating position, velocity and a time varying parameter

in a second order non-linear differential equation.

The feasibility of using the estimated angular velocity

in example (1) above to control the space vehicle so as to

reduce the angular velocities is then investigated. The re-

sults of computer experiments indicate the possibility of

accomplishing angular velocity reduction in a space vehicle

using only one rate gyro.

5.3 Problem Statement

The proble m under consideration is that of estimating

state variables and parameters in noisy non-linear dynamical

systems. In this section the problem is defined for the

scalar case and a physical interpretation of the proposed

criterion for estimation is presented. It is a simple matter

to generalize the results to the vector case; this is done

in Appendix F.
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Consider the class of systems defined by

= g(t, x) + k(t, x) u (5.3.1) I

where u represents an unknown input. The explicit inclusion

of t in the right hand side of equation (5.3.1) accounts for

all known inputs. Let the output observations be denoted by

y(t) = h(t, x) + (observation error) (5.3.2)

!

!

!

where the (observation error) term accounts for the fact that

based upon output measurements y(t)

estimate the current state x(T).

will be used to estimate x(T).

the output observations are of limited precision_ Using the

philosophy presented in the introduction, no statistical as-

sumptions are berg made concerning the unknown input or the

observation error. The estimation problem is the following:

in the interval 0 s t _ T

A least squares criterion

Using the usual least squares

terminology define the following residual errors

.m

e, (t) = y(t) - h(t, x(t)) (5.3.3)

m N

e,(t) = x - g(t, x(t)) (5.3.4)

where x(t), 0 _ t _ T, represents a nominal trajectory. If

x(t) were the true trajectory of the system given by equation

I

I

I

I

I

I

I

I

I

I
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(5.3. I) then for no observation errors it would follow that

e_ (t) • 0 and for no unknown inputs it would follow that

es (t) • O.

The problem of estimating x(T} in a least squares sense

reduces to minimizing with respect to x(t), 0 • t • T, the

usual functional

T
8

J' [e,S(t) + w(t, X) ea(t)] dt
0

where w(t, x) is a positive weighting factor.

0 • t • T, denote the minimizing function7

estimate of x(T) is then x(T).

The estimation of x(T) is then based on minimizing an

integral of the sum of the weighted, squared, residual er-

Eor8.

(5.3.5)

Let x(t),

the least squares

5.4 Re_omulation o( the Problem

It will be convenient to reformulate the problem. Sub-

stituting from equations (5.3.3) and (5.3.4) into (5.3.5)

and then minimizing the expression (5.3.5) with respect to

I" X(t}, 0 • t • T, is equivalent to minimizing

)' o ).
0

I (5.4.l)
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m

with respect to x(t), 0 • t & T. Using equation (5.3.1) for

motivation, this in turn is equivalent to minimizing

I

I
I

I

(5 4.2)

w

with respect to x(t) and u(t), 0 • t • T, subject to the

differential constraint

x = g(t, x) + k(t, x) u (5.4.3)

The minimization of the expression (5.4.2) with respect

to x(t) and u(t), 0 • t • T, subject to the constraint given

by equation (5.4.3) constitutes the reformulation of the

problem.

5.5 The Variational Problem

For the moment let the interval of observation, denoted

by T, be fixed. The minimization of the expression (5.4.2)

subject to equation (5.4.3) is then a Lagrange problem in

the calculus of variations. The Pontryagin maximum principle

[21,24] will be used to write the Euler-Lagrange equations

for this variational problem.

I
I

I

I
I

I

I

I
I

I
I
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I
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Let

w _ m

v(t, x) = w(t, x) kin(t, x) (5.5.1)

and define the "pre-Hamiltonian '° H(t, x, k, u) by

s(t, x, )k, u) = (y-h(t, x))"
m

+ v(t, x)u '

m

+ keg(t, X) + k(t, x) u] (5.5.2)

n

Setting _ = 0, solving for u(t, x, k) assuming

v(t, x)_ 0, and substituting u(t, x, A) back into H leads

to the Hamiltonian H*(t, x*, k). The variable x* replaces

x to indicate that x* is the trajectory along which the max-

imum principle is satisfied. The Hamiltonian is then

H*(t, x*, ),) = (y- h(t, x*)) s

! ;Lm
4 w(t0 x*)

+ A g(t, x*)

(5.5.3)

/

The Euler-Lagrange equations are then

_. JJ.t (t, x* ),)= @l.

1-
= _ OH* It. x*, X)

i _x*

(s.s.4)
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since T has been fixed, and x*(0) and x*(T) are free, the

transversality conditions yield

k(0) = 0 k(T) = 0 (5.5.5)

Equations (5.5.4) with boundary conditions (5.5.5) is a

TPBVP. The solution of this TPBVP will yield the least

squares estimate of x(T), i.e., x*(T).

Now suppose that the observation interval is increased

to 0 _ t _ Tl where Tl > T. In order to obtain a least

squares estimate of x(T,) using all the data observed for

0 & t & Tl it is necessary to solve equations (5.5.4) with

boundary conditions

).(0) = 0 k(T,) = 0 (5.5.6)

This is a different TPBVP than that described by equations

(5.5.4) with boundary conditions (5.5.5).

The sequential nature of the estimation problem will

now be emphasized. In the sequential problem the variable

T is regarded as an independent variable, the running time

variable. For each value of the independent time variable

T, in order to estimate the current state x(T) in a least

squares sense using all the observations in interval 0 to T,

I

I
I

I
I

I

I
I

I

I
I

I

I
I

I
I

I
!

I
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it is necessary to solve a TPBVP of the above type. The se-

quential nature of the estimation problem then leads natur-

ally to the use of invariant imbedding techniques [29].

5.6 The _nvariant _mbeddinREquat_ons

In order to solve the sequential estimation problem it

is necessary to solve the TPBVP described by equations (5.5.4)

with boundary conditions

k(0) = 0 A(T) = 0 (5.6.1)

for all values of the variable T, the running time variable.

Using the techniques of invariant imbedding [29] replace

the boundary conditions (5.6.1) by the more general condi-

tions

x(0) = 0 X(T) = C

I Let r(C, T) be the missing

I that x* and k satisfy the

i with boundary conditions

D] that r(C, T) satisfies

(5.6.2)

terminal condition on x* given

TPBVP described by equations (5.5.4)

(5.6.2). It can be shown [Appendix

I
_r ar _ (T, r,

I _- _ ar

_H*
C) = -- (T, r, C) (5.6.3)

_C

!

!



132

The solution to the non-linear partial differential

equation (5.6.3) with the proper boundary conditions on r

contains the solution to all TPBVP's consisting of equations

(5.5.4) with boundary conditions given by equations (5.6.2).

In order to solve the sequential least squares estimation

problem it is necessary to determine r(0, T) since k(T) = 0.

5.7 The Sequential Estimator Results

The partial differential equation (5.6.3) may be trans-

I

I

I
formed approximately into an initial value problem by sub-

stituting r(C, T) = -P(T) C + x(T) and expanding about r(0, T)

retaining terms to first order in C. The motivation for this

approach is that only those solutions of equation (5.6.3) for

which C = 0 are of interest. Also the least squares estimate

of x(T), now denoted by x(T) to emphasize the sequential ha-

ture of the problem, is r(O, T).

are

The results [Appendix E]

d_
-- = g(T x) + 2P(T) h_(T. x) [y - h(T x) ]dT '

I

I

dP 2P(T) (T x) (5 7.1)
dT - gx

° I+ 2P a-_[h_(T. &) Cy-h(T _] ]

+
2w(T, _)
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_

I

I

I

where h. _h

The differential equations (5.7.1) are the principal

result; they describe a filter which operates in real time

on the observations to sequentially produce least squares

estimates of the current state.

Comparing the equation for P with that obtained by Bell-

man, Kagiwada, Kalaba and Sridhar [30] for the more restric-

tive problem which allows observation errors only, it is

interesting to note that the _2w( I, _)_ term is the only

modification necessary to account for unknown inputs.

The results for the vector case are given in Appendix F.

5.8 Experimental Results - Estimatio n

a) Procedure

A number of controlled, computer experiments were

performed in order to test the feasibility of the proposed

sequential least squares estimator. Each experiment was

divided into two phases. In phase 1 the system trajectory

was generated by solving equations (5.3.1). In phase 2 the

output data from the system was corrupted with measurement

noise, i.e., y(t) from equation (5.3.2) was generated, and

finally the noisy observations were used as an input to the

sequential estimator as described by equations (5.7.1).
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The model used for the measurements was

y(t) = P1"r_(t) - Ix(t) I + x(t) + P_'ra(t) (5.8.1)

where x(t)

y(t)

rl (t), ra (t)

P_. , PS

- the variable measured

- the observed value of x(t)

- for each t, statistically independent

random variables, uniformly distributed

between -i and +I.

- constants, used to adjust the relative

magnitude of the error.

An interpretation of the model for the measurements is

as follow.: suppose the maximum magnitude of x(t) is in the

order of unity, then with P_ = Pa = 0.I the error model cor-

responds to measurements accurate, on the average, to ap-

proximately one significant figure. Therefore if the magni-

tude of x(t) is approximately known the relative accuracy

of the measurements may be controlled by adjusting Pl and P_.

b) E_amp!_e_ - P_otation_l Motion of aR_qid Body About

Its Center of Mass

The following question provides the physical moti-

vation for this example: Is it possible to sequentially

estimate the three angular velocities about the principal

body axis of a rotating body given noisy measurements on only

one angular velocity? The equations of motion are

I

I
I
I

I

I
I

I

I
I

I

I
I

I

I
I

I
I
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_._% + ul (5.8.2)

la - II

_S = Ia
_I _a + u4

&UI lus + u s

where

_. = angular velocity about the ith principal axis
1

u. = disturbance torque/l, for the ith principal axis
1 1

I. = moment of inertia about the ith principal axis
1

Let

IL = I0 slug ft 8, Is = 20 slug ft_ and Is = 40 slug ft a

(i) Consider first the case when it is known that there are no

disturbance inputs acting on the system, i.e. ux = ua = u_ = 0

in equation (5.8.2). Using the results in Appendix F, equa-

tion (F.31) the sequential estimator equations for this ex-

ample become

" A A + 2 P_x(_l- &',)

R •
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P- -2PSQX' P + g& P + P gl

where

p

Q=I

PII

P21

P31

PI2

P22

P32

PI3

P23

P33

HQH ' =

1 0 0

0 0 0

0 0 0

0

= i. 5&3

-0.25_a

-2_a -2_s

0 l.S&

-0.25_ I 0

Q_, = measured value of _, using the error model

given in equation (5.8.1), with Pl = 0.i

and P_ = 0.I.

- denotes transpose

Figure 5.1 displays the results for _.
1

using initial conditions

i = i, 2, 3

"0.9]

&(O) = o.oJ

.0.0]

P(O) =

3

1

1

1

3

1

.

1

3

(s.8.4)

I

I

I
I

I
I

I

I
I

I

I

I
I

I
I

I
I

I
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The initial conditions for _. reflect the physical sit-
1

uation, i.e., for _l(0) is used _,(O-)whereas zero is selected

for _s (0) and _(0) as no information is available. The on-

diagonal terms in P(0) reflect in some manner the confidence

one has in the initial values of _..
1

ii) In the case of disturbance inputs to the system,

1

referring to _Appendix F, let W(t, _) = I where I = identity

matrix. Then, since k(t, x} = I, the only modification to

the sequential estimator equations (5.8.3) is to add the

identity matrix to the right hand side of the P equations.

Figure 5.2 displays the results for _. i = I, 2, 3
1

with constant disturbance inputs ul = 0.005, u_ = -0.005,

u3 = 0.005 acting on the system.

Figure 5.3 displays the results for _ i = i, 2, 3
1

with random disturbance inputs acting on the system. The

model for the disturbance inputs was

ui(t) = 0.01 r. (t)i
i = i, 2, 3 (5.8.5)

I

I

I

where

r. (t)
1

i = i, 2, 3 for each t, are statistically

independent random variables uniformly

distributed between -i and +1.
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i

While the disturbance inputs used in these two examples

may seem to be of low level, it has been determined experi-

mentally that properly applied inputs in the order of 0°05

on each axis will reduce the _.'s to zero in 15 to 20 seconds.
1

The estimates of all the _. 's were Within 5% of their
1

true values at the end of 34 seconds. Some estimates were

within 0.2_ of their true values.

Comparing Figures 5.3 and 5.2 with Figure 5.1 it is in-

teresting to note that the additional term in the P equa-

tions, which accounts for unknown inputs, resulted in the

state estimator "tracking" the angular velocities _. i = 1,2,3
1

considerably earlier than in the case when this term was not

present. Due to this experimental evidence the additional

term in the P equations was retained for the remaining exam-

ples.

c) Example - Es%imation of Position, Velocity and a

Time Varying. Parameter

Since the method presented makes no distinction

between state variables and unknown parameters which may be

modeled by differential equations the following example

is quite pertinent to the type of problems of interest to

JPL even though parameters are also being estimated here.
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The system equations are

Xl = X8

Xs = -2x, - a(t)x, s - 3x_ + 5 sin (t) (5.8.6)

where

a(t) = 2e -O'It (5.8.7)

and the output observations are

y(t) = observed value of x, (t) (5.8.8)

using the model given by equation (5.8.1) with Pl -- Pa = 0.I.

Suppose the form of a(t) is known but not its initial

value or "time constant", then a(t) may be modeled by

&(t) = -b a(t)

b=0

(5.8.9)

where the initial conditions on b and a(t) are unknown.

The sequential estimation problem is, based on y(t)

0 & t & T, to estimate x I (T) , xa (T), a(T), and b(T) = b(0).

Define xs(t) = a(t) and x4 (t) = b. Using the results in

Appendix F, the estimator equations for this example become

I

I
I

I
I

I
I

I

I

I
I

I

I
I

-I
1

I

I
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I

I Xs = -2xt - X_Xt s - 3xa + 5 sin (t) + 2Pal (y - xx)

I Xa = -_ + 2Pa1(y - xl) (5.8.10)

I P -- -2PHQH'P + g_P + Pg_' + I

I where

i Q=I

P = [Pij ] is a 4 X 4 matrix

I f_° ° °I

I Lo .... oj
I

I 0 1 0 0

= -e -3_.il" -ax _x -x_I J
0 0 -x4 -_

I
I

I

I

0 0 0 0
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Figure 5.4 displays the results for x.
I

i = i, 2, 3, 4

obtained with initial conditions for the estimator of

0
&(O) = 0

0

[0

3 1 1 i

1 3 1 1

1 1 3 1

1 1 1 3

P(o) =

(5.8 .Ii)

It is interesting to note that the estimator "tracks"

x I and xs considerably sooner than it "tracks" either a(t)

or b. Apparently the coupling between the x and P equations

compensates for the initially poor estimates on a(t) and b.

d) Example - Rotational Motion of a Rigid Body, Linear

Combination of Anqular Velocities Measu_red

The examples presented here are similar, with two

exceptions, to those in part (a).

The major difference is that here the output of the

system will be assumed to be a linear combination of the

three body angular velocities. Outputs of this type could

be obtained by using one rate gyro which is skewed with

I

I
I

I
I

I

I
I

I

I
I

I

I
I

I

I
I

I
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I

I

respect to the three principal body axes. The motivation I

for measuring a linear combination of the angular velocities

about the principal body axes, is that with measurements of I

only one angular velocity _out a principal axis there is I

,not a unique solution to the state estimation problem in

the untorqued case. The equations of motion in the untorqued I

case are . I

._ = c, _% QO, (5.8.12)

US = CS &&% US I

where c. i = i, 2, 3 are known constants.
1

Let X_ (t) , Xa (t) ,

Xa (t) represent a solution of equations (5.8.12), i.e.

_.(t) = X,(t)
l i

i = i, 2, 3, then X,(t), -Xa(t);-Xs (t) also

represents a solution of equations (5.8.12). Hence if only

I

I
I

the angular velocity _(t) is measured it is not possible

in the untorqued case to distinguish between the above two

solutions. This ambiguity in sign does not exist if a linear

combination of the _. i = 1, 2, 3 is measured.
1

The second difference is that the numbers used for the

principal body moments of inertia and initial conditions on

the body rates are comparable to the problems of interest to

-I

I

I
JPL.



147

The system equations are

I

I

I

Is - Is

la - Il

_s - Is _z _s (5.8.13)

. Il - I_

and the output is

y = h1_ + ha_s + ha_s + (observation error)

(5.8.14)

where the model for the measurements is given by equation

(5.8.1). Let Il = 92 slug ft s, Is = 113 slug ft s, Is = 63

slug ft s , and hl = hi = ha = 0.578. The values of the h. 's
1

were arbitrarily selected so that each angular velocity about

a principal axis was weighted equally in the output. Using

the results in Appendix F, equation (F.31), the sequential

estimator equations for this example become

3

_-(Z_ _D _-
i=l

I = 0.576 _ _, +

I-

i=1 (5.8.15)
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us = -0.35 &_

3

_a + 2< _" hi>J. P3i • Z

i=1

= -2P HQH'P + ga P + Pg_' + 0.002 - I

where

Z = y - h,_, - ha&m - h, as

P = 3 x 3 matrix

Q = 1

I
I

I

HQH' = [h i hj ]

0

-0.283

-0.35

0.576 a, 0.576 &_

_s 0 -0.283 at

_a -0.35 a_ 0

I

I

I
Figures 5.5 and 5.6 display the results for two different

sets of initial conditions for the system equations (5.8.13).

Also included on these graphs are the true output, the esti-

mated output, and some of the measured outputs. The measured

values are shown at ten second intervals in order to convey

some feeling for the type of measurement errors given by the

model used.

I

I

-I

I

In both of these examples the parameters used I

for the noise model, given by equation (5.8.1), were P, = 0.i
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and Pa = 0.01.

equations were

The initial conditions used for the estimator

0

_(o) = o

P(o)

0

"!
0.03 0.01 0.011

]0.01 0.03 0.01

0.01 0.01 0.03

(5.8.16)

The initial values for the estimates 2.
1

i = I, 2, 3

reflect the fact that since a linear combination of the an-

gular velocities is being measured, no information concern-

ing the individual velocities is available at time t = 0.

5.9 Control Usin_ Estimated State

The above section has shown that the proposed estimation

scheme provides a feasible method of sequential estimation

of state variables in noisy non-linear dynamical systems.

The next question is then, is it possible to use the esti-

mated state variables for control purposes? Of interest, to

JPL, specifically: Is it possible to use the estimated angu-

lar velocities about the three body axes for the attitude
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control of a space vehicle? This section will consider the

feasibility of using the estimated angular velocities, as

produced by the non-linear state estimator, for rate reduc-

tion purposes. The motivation for the approach presented is

- d_xz_ to _emove two rate gyros from a space vehicle

attitude control system.

The problem considered is then, that of using noisy

measurements on one angular velocity to sequentially esti-

mate all three angular velocities about the principal body

axes and then to use these estimated velocities for rate

reduction. Figure 5.7 displays the overall block diagram

of the system used for the initial feasibility studies.

Since the first portion oftbe overall control scheme is con-

cerned with state variable estimation, the switches indicate

that at time t = T the controller is turned on and then the

estimated state is used for control purposes.

The controller selected for these experiments repre-

sents a "bang-bang" type of controller which could be physi-

cally realized by the use of on-off gas jets. Actually the

portion of the overall system contained within the dashed

lines is rather arbitrarily labeled the controller. The

controller could just as easily be thought of as the non-linear

I

I

I

I
.I

I
I

I

I
I

I

I
I

I

I
I
I

I
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state estimator plus the relays, as this system receives as

an input the measured output of the plant and processes this

data to produce signals which will control the plant.

5.10 Experimental Results - Control Usinq Estimated State

A number of computer experiments were performed in order

to test the feasibility of the proposed method for rate re-

duction in the space vehicle attitude control problem. In

each experiment the non-linear state estimator was allowed

to run_ without the controller, for 260 seconds, at which

time the controller was turned on.

The principal moments of inertia and acceleration con-

stants used were comparable to problems of interest to JPL.

The values for the principal moments of inertia were identi-

cal to those used in the state estimation examples (part d).

The acceleration constants used were 0.0005 rad/(sec) s on

all three axes. Also in all the experiments the initial

conditions for the estimator equations were the same as in

estimation - only experiments, i.e. equations (5.8.16).

Figure 5.8 displays the results for the plant initial

conditions of _h = _s = _3 = 50 milliradians/sec. The para-

meters used for the measurement model, given by equation

(5.8.1), were Px := 0.i and P_ = 0.01.
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I
I
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Figure 5.9 displays the results for the plant initial

conditions of _ = _ = _ = 10 mrad/sec. The parameters

in the error model were P_ = 0.1 and Pa = 0.001.

Figure 5.10 displays the results for the plant initial

--- " " .... = I00 mrad/sec, _8 _3 = _u

The parameters in the error model were P, = 0.i and Ps = 0.01.

Figures 5.11 and 5.12 display the results for the case

of a 5 percent error in the controT torques. That is, for

t > T = 260 seconds the vehicle is being torqued at a dif-

ferent rate than are the estimator equations for angular

velocities. To see the effects of the errors in the control

torques, these figures may be compared to Figures 5.8 and 5.9

respectively.

In all of these examples it can be seen that the pro-

posed control scheme does accomplish rate reduction. The

results from these feasibility studies indicate that it may

be possible to control the three angular velocities of a

space vehicle using only one rate gyro.

5.11 proqrams

Appendix J contains the listing of the programs which

were used to produce the experimental results concerning the

estimation and control of the angular velocities of a space
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vehicle. While no claim is made concerning the efficiency,

in terms of computation time, of these programs, they are

working programs of some flexibility. A brief description

of the important parameters of the programs is also contained

in this appendix.

5.12 Conclusions and Future Work

A sequential lea_t squares estimator has been formally

derived. The approximations made were necessary in order to

obtain the sequential estimator equations from the non-linear

partial differential equation of invariant imbedding. This

estimator could be implemented in real time.

In general, the question of observability of the system

with respect to the output has been ignored, i.e., consider-

ing just the noisless case for the moment, does y(t) for

0 _ t _ T uniquely define the state x(T)? The observability

question for non-linear systems has received little attention

in the technical literature. The sequential estimator pre-

sented in this chapter provides a tool for experimentally

studying the observability of specific systems.

Examples were presented which demonstrate that the

sequential least squares estimator proposed is feasible.

The examples of specific interest to JPL concerned the
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estimation of the three angular velocities about the princi-

pal axes of a rotating rigid body. These velocities were

estimated based on noisy measurements on only one angular

velocity. Examples were presented which demonstrate that

rate reduction based on the estimated angular velocities,

as produced by the sequential state estimator, is feasible.

Currently the following problems are being investigated:

(i) The physical interpretation of the P equations in the

state estimator, i.e., how should the initial conditions P(0)

be selected and precisely what interpretation should be

given to P(t). (2) The sensitivity question as it applies

to the problem of interest to JPL, i.e., what happens to the

performance of the estimator in the case when the principal

moments of inertia are not known precisely, and can this

error in the moments of inertia be compensated for?

I
I

i
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CHAPTER 6

MIN-MAX OPTIMIZATION

6.1 Summary

In this chapter, the use of a rain-max criterion in the

solution of the specific optimal control problem is devel-

oped. The use of the criterion in conjunction with an ap-

proach analogous to differential approximation is discussed,

and a method for solution of the problem using quasilinear-

ization and linear programming is given. Linear programming

and the simplex method are discussed briefly.

Several variations in approach to this problem are

pointed out and discussed, and examples are given. Future

work in this area is outlined.

6.2 Introduction

The method of differential approximation was developed

in Chapter 3 of this report. The use of this method requires

fitting one trajectory to another using a least-squares cri-

terion. It is mentioned in Chapter 3 that an alternative to

the use of the least-squares criterion for fitting the system
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trajectory to the optimal trajectory is the use of a criter-

ion which would minimize the maximum deviation between the

two trajectories. Such a criterion shall be called a "rain-

max" criterion.

A modification of the differential approximation pro-

cedure as presented in Chapter 3 which makes use of the

min-max criterion will be presented, along with a method

for solving the problem which utilizes the basic ideas of

quasilinearization [I0], [Appendix B], and linear programming

[33,34].

6.3 Use of Min-Max Criterion in SOC Problems

In Chapter 3 a typical optimal control problem was

stated, and several of the classical methods for solving

the problem were outlined. The limitations of these meth-

ods with regard to practical, realizable solutions were

pointed out, and these limitations were in turn regarded

as motivation for the SOC approach to the solution of the

optimal control problem. Now, along with the approaches to

the SOC problem given in Chapter 3, an additional approach

will be presented.

Consider that the plant that one wishes to control is

i
I

I
I

I
I
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I

I
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described by the differential equation

I -&= _f(t, _x, u)

!

I

I

I
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(6.3.1)

where _ - n-dimensional state vector

u - scalar control input

At the initial time (taken to be zero) the plant is specified

to be in a state _, i.e.

_x(0) =_c (6.3.2)

i It is desired to find the input u = u(x, t)

minimize the performance index

! ,
I = _ glt, x, u) dt

oI

I
I

I
I

I

I
I

which will

(6.3.3)

In (6.3.3), g is a scalar, non-negative function, and T is

the terminal time, which may be fixed or free.

In order to convert this into an SOC problem, consider

a controller of the form

u = h(_b, _x) (6.3.4)

where h is a scalar function of known form and b is the m-

dimensional vector of parameters whose values constitute
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the solution to the SOC problem. A restriction on the form

of h is that it be linear in the components of b. The rea-
L

son for this restriction will become apparent subsequently.

In general h of equation (6.3.4) need not explicitly depend

on all the components of x.

First it is necessary to find the optimum "open-loop"

solution, u*(t). If T is fixed, this can be done by solving

the canonic equations of the problem withappropriate boundary

conditions, usually by quasilinearization [i03. Xf T is.

free, then some other method faust be used, such as a gradient

method, as proposed in reference [63. Having u*(t), one can

obtain x*(t) the optimal trajectory, by integrating (6.3.1)

with initial conditions (6.3.2) and u*(t) as an input. How-

ever in general the latter step is unnecessary since any

method for determining u*(t) will also yield x*(t).

Now the problem is to choose b so that the trajectory

x (t) obtained with the specific controller shall be fitted
--s

to x*(t) in the min-max sense. A modification of the quasi-

linearization scheme can be used to accomplish this task.

First, since b is a constant,

b : 0 (6.3.5)
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I

NOW one substitutes (6.3.4) into (6.3.1) and adjoins (6.3.5)

to the resulting equation. One then has

= f(t, x h(b x))

b = 0

(6.3.6)

with initial conditions x(0) = C and no given conditions on

b. The object is to find a solution of (6.3.6) subject to

(6.3.2) such that the value obtained for b causes x(t) to

be fitted to x*(t) in the min-max sense.

AS in the quasilinearization solution to boundary-value

problems, one can find a solution to this problem by forming

a sequence of linear problems, the solutions to which will

converge to the solution of (6.3.6) subject to the specified

I

I

I

initial conditions.

Rewrite (6.3.6) as follows:

= fl (t, y) (6.3.7)

I

I

I

, i- l" where y =

I,,, ,=1

y and f, are (n+m)-dimensional vectors
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Proceeding as in quasilidearization, one forms the "quasi-

lineal'equations [Appendix B]

Some of the boundary conditions on (6.3.8) are

(y,(0), y,(O) ..... Yn(0)_+l : (Cl, Cs ..... Cn )

(6.3.9)

If the k-th approximation to the solution of (6.3.7),

_k is known a solution to (6.3.8) may be obtained in the

form

Zk+l(t) = _÷i (t) _+l + P-k_l(t) (6.3.10)

where _+l(t) = fundamental matrix solution of the
homogeneous part of equation (6.3.8)

made unique by choosing _n+l(0) = identity
matrix

_+I = vector of initial conditions on y_k+l

(t) = a particular solution of the inhomogen-

eous equation (6.3.8) made unique by

choosing Pk+l(0) =

At this point one departs from the usual quasilineariza-

I

.I

-I
tion procedure, which would involve constructing and solving
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a system of linear algebraic equations in the components of

K. Instead, one constructs a linear programming [33,34]

problem and solves it. The solution satisfies the min-max

criterion and gives the appropriate values of b. This

process is iterated until convergence is obtained.

I

I

I

i

I

6.4 Linea r ProqraBming [33,34]

It is advantageous at this point to digress from the

problem at hand in order to give a brief explanation of

linear programming. The reader who is already familiar with

linear programming can skip this section and proceed directly

tc section 6.5.

Consider the following problem. One has a system in

which there are n variables, x,, x_ ..... x . The proper-
n

ties of the system are such that the n variables are related

by m linear relations, which might be equalities or inequal-

ities. Also associated with the system is a quantity z

which represents some desired goal or objective; z should

be expressed as a linear combination of the variab]esx.,
1

i = i, 2 ..... n. It is desired that z be minimized (or

maximized) by a proper choice of the variables x..
1

As an illustration, suppose that the system under con-

sideration is a Clothing store, and that the x. represent
1
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the amounts of various articles of clothing that the store

manager will stock for sale in the store. Let z represent

the total net profit, and assume that various linear rela-

tions are known (either empirically or otherwise) between

the amounts of the various items purchased and the amounts

that can be stored, the number of items that will be lost to

shoplifters, damage in transit, etc., and the number of each

item that can be expected to be sold. The problem here

would be to pick the x. such that all the relations cited
1

above (constraints) would be satisfied and z, the profit,

would be maximized.

In more precise mathematical terms, the problem could

be stated in the following way. Given the objective form

n

. x.Z "-" a I 1

i=l

and the constraints

n

bij x. _ c.i 3

i=l

i = l, 2 ..... n (6.4.1)

j = I, 2 ..... m (6.4.2)

where a , b., and c. are constants for all i and j0 find
i z3 3

the values of the x. which maximize (6.4.1) subject to the
1

constraints (6.4.2).
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The foregoing is a statement of the general linear pro-

gramming problem. Of several methods available for solving

the problem, the momt pop%%_ar and most generally used is the

simplex method. In order to apply this method, certain

restrictions must be applied to the problem, viz., the var-

iables x. must be non-negative, the constraints must be
1

linear equalities, and the objective form must be minimized

by the optimum solution. This constitutes the "standard form"

of the linear programming problem.

It is an easy matter to transform the general problem

of (6.4.1) and (6.4.2) into the more restricted form men-

tioned above. In order to insure the non-negativity of the

variables, one takes advantage of the fact that any number

can be written as the difference of two non-negative numbers.

For instance, if the variable x in the original formulation
1

of a problem has no restrictions on its sign, one makes the

substitution

' X'_X. -- X. - (6.4 3)
1 1 1

e o#
where x. • 0 , x. • 0

1 1

A similar substitution ks made for all variables whose non-

negativity is not assured. Note that every such substitution
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increases the number of variables in the linear programming

problem by one.

If the original formulation of the problem contains

inequality constraints, these may be converted to equality

constraints by the introduction of non-negative _:siack

variables."

FoE example, suppose that the following constraints

arise in a linear programming problem:

b**x, + b,_x_ _ c,

balx_ + b_xa _ ca

(6.4.4)

To convert (6.4.4) to equalities, the non-negative variables

x_ and _ would be introduced as follows:

b11xl + blaxs + x s = C I

balxl + bmax_ - x4 = Ca

(6.4.5)

Thus the inequalities become equalities. The variables x s

and x4 are called "slack variables" because they "take up

the slack" in the inequalities. Again note that each slack

variable introduced increases the number of variables to be

considered.
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The initial formulation of the linear programming prob-

lem may be ,such that the objective form is to be maximized.

If such is the case then a change is necessary in order

that the problem be in standard form. To make this change,

one minimizes the negative of the original objective form,

which is to say that maximizing z is equivalent to minimizing

--Z.

Thus it is seen that any linear programming problem

can be put in standard form. The emphas_s is placed on the

standard form because it is necessary that a linear programming

problem be in this form before the simplex method can be

applied. A concise statement of the problem in standard

form will now be given: Find the values of non-negative

variables x. which minimize the value of a linear form in the
1

variables, subject to given linear equality constraints.

When the problem is put in standard form, the simplex

method can be utilized to obtain the solution. An excellent

presentation of the simplex method is given in Reference [33].

6.5 The Linear Proqramminq Problem

To illustrate the formation of the linear programming

problem mentioned previously0 consider the following simpli-

fied situation. Suppose it is desired to fit Xls(t), the
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!

!

first component of Yk+l of (6.3.10) to x,(t), the corres-

ponding component of x*(t), in the min-max sense. From

(6.3.10), dropping the subscript k+l for the sake of sire-

plicity, one can write

n÷m I
Xls(t) = _ _l,j k,3 + P* (6.5.1)

j=l

where
_l,j = j-th element of first row of

k. = j-th component of K
3

P, = first component of P

A numerical solution to this problem requires that

*

Xls(t) be fitted to a finite number of points on x_ (t).

Suppose that one has _ points on x I , corresponding to _

different instants of time, i.e.,

x, (t i) = d.1
i _ I, 2, .... (6.5.2)

From (6.5.1) one can write

n+m

= [ _l,j(ti) k. + P_ (t)X 1 s (ti) 3 i

j=l

(6.5.3) i I

The deviation between the two curves at each time t is
1

xl (t i) - Xls(ti)- Let variables _. and _i be introduced1
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such that

_. >0 , J. _0,
1 1

i = i, 2 ..... (6.5.4)

Now one may write the deviations as

x, (t i) - Xls(ti) = (_'i - Ai

or

° m

l

n+m

V

j=l

(6.5.5)

_.,_ j(t i) k - P, (t i) = _ -3 i 'i

i = I, 2 ..... _.

Note that the first n components of K are the initial con-

ditions on x, which are known; the remaining m components

are the components of b, which are to be found. Since the

deviation between x, and Xls may be either positive or

negative, one writes it as the difference of two non-negative

variables, as in (6.5.5); the _'i and _i will be variables

in the linear programming problem and are required to be

non-negative.

As the next step, introduce non-negative variables z,

Pi' and qi such that
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_. _ Z
1

_. + p = Z
Z i

(6.5.6)

R.Z ÷ qi = z

i = l, 2 ..... _

Also, since non-negative variables are required, and gener-

ally one has no a priori knowledge of the signs of the com-

ponents of b, which are the last m components of K, it is

necessary to make the following substitution

k. = k.' - k." (6.5.7)
3 3 ]

j = n+l, n+2, . . . , n.m

From (6.5.7), (6.5.5), and (6.5.6)° one has 3_ equa-

tions in the (4% + 2m + i) variables k. ', k.", G., $i' Pi'
3 3 z

qi' and z (j = n+l, n+2 ..... n+m ; i = I, 2 ..... %).

Let z be eliminated from all but one of the equations, by

standard pivoting operations [33].

One now has (3.6-1) equations in (4_+2m) variables and

z expressed as a linear combination of the variables. Notice

that the equations are necessarily linear because of the

I

I

I
I

I
I

I
I

I

i
I

I

I

i
i

I

I
I

I
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quasilinearization-type approach to the problem. This fits

the standard form of the linear programming problem with z

being the objective form that is to be minimized. Minimiza-

tion of z will cause the maximum deviation between x I and

Xls to be minimized.

The preceding formulation is somewhat cumbersome, as

it involves more variables and equations than are actually

necessary to solve the problem. Also, it is difficult to

prove rigorously that in general, the maximum deviation is

minimized when z is minimized, even though the examples show

that this does occur. An alternate formulation is given, in

which fewer variables and equations are involved, and the

satisfaction of the rain-max criterion by the solution is

obvio us.

Let the magnitude of the deviation between x, and Xls

at time t. be 6., i.e.
1 1

Ix[(ti) - Xls(ti) I = 6i

i = i, 2 .... , %

(6.5.s)

Relation (6.5.8) can be replaced by the following two rela-

tions:
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Now introduce the non-negative variable

Using (6.5.10) ,

taining

!

!

x**(ti) - Xls(ti) _ 6i I

(6.5.9)

x1*(ti) - Xls(ti ) _-6i i

i = I, 2, .... _ I

e n)n-r g Ltive va i_ble z such that l

z • 6 i , i = l, 2 ..... _ (6.5.10) i

one can eliminate the 8 i from (6.5.9), ob- I

!
*

xl (ti)- Xls(ti) _ z

(6.5.11) I

*

Xl (t i) - Xls(t i) _ -z l

i = i, 2, ....

As in the previous formulation, it is necessary to make the

substitution given by (6.5.7), since one generally has no

a priori knowledge of the signs of the components of b. Now

let the non-negative variables Pi and qi be introduced such

that

xl (t i) - Xls(t i) + Pi = z

xl (ti) - Xls(ti ) - qi = -z

(6.5.12)

i = i, 2, ..., %
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If z is eliminated from all but one of the equations (6.5.12),

the result js (2_-1) equations in the (2Z+2m) variables Pi'

qi' k.', kj" (i = I, 2 .... , %; j = n+l, n+2, ..., n+m), with3

z expressed as a linear combination of the variables. This

is now a linear programming problem with z being the objec-

tive form that is to be minimized. From (6.5.9) and (6.5.10),

the minimization of z will cause the maximum deviation to be

minimized. Note that this formulation involves fewer equa-

tions and fewer variables than the first formulation.

It is not difficult to see that the size of the linear

programming problem can get quite large in a solution of the

type just described. For example, if one wanted to obtain

values for two parameters by obtaining a min-max fit to

twenty points, the linear programming problem would involve

thirty-nine equations in forty-four variables using the

second, formulation. As the number of observations or para-

meters increases, the size of the linear programming problem

increases. It is obvious that the amount of available storage

in the computer places an upper limit on the size of the

problem that can be considered.

One should be aware that the example cited above for

purposes of illustration of the method of solution is greatly
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simplified. For this procedure to be analogous to the dif-

ferential approximation procedure of Chapter 3, it would be

necessary to fit simultaneously all components of the state

vector (Xls, X2s, ..., Xns) to the corresponding components

of the optimum solution x*(t) in the min-max sense.

6.6 Examples

Examples 6.1:

The technique outlined above was used to solve a spe-

cific optimal control problem. The plant considered was

described by the differential equations

XI -- Xe

X_ = --3X a -- 2X I + U .

(6.6.1)

The initial conditions were

x_(0) = -5.0

x_(O) = -5.0

The performance index which was to be minimized was

1

f (Xl 2 ÷ X_ a + U _) dt
0

(6.6.2)
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The solution of (6.6.1) which minimizes (6.6.2) with the

given initial conditions was found using quasilinearization.

The points to be used for the rain-max fit were arbi-

trarily chosen at 0.l-second intervals on x_*, beginning at

t = 0.1 sec. For this particular problem, five points were

used. The controller used was of the form u = bxl.

Convergence was obtained in three iterations, and the

value of b was found to be -0.0247079.

The results are graphically shown in Figures 6.1 and

6.2. In Figure 6.1, Xls(t) and xl*(t) are plotted. It can

be seen that the two curves are quite close over the range

used for the rain-max fit and are somewhat divergent over the

remainder of the time considered. The situation is similar

for the derivative, xa, which is shown in Figure 6.2.

Obviously, better agreement between Xls and xl* could

be obtained if more points were used for the rain-max fit.

This is done in the next example.

Example 6.2

The problem is the same as was considered in the pre-

vious example, except that ten points on x1* were used for

the min-max fit. The points were taken at 0.1-second in-

tervals, beginning at t = 0.i sec. The value of b obtained
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was -0.247892. Convergence occurred in three iterations.

Results are shown in Figures 6.3 and 6.4. As was

expected, the agreement between Xls and x1* was much better

than in the previous example; this is shown in Figure 6.3.

Similarly, the derivative X2s is in much better agreement

with xa* then in the previous example, as may be seen in

Figure 6.4. The program used for example 6.2 is given in

Appendix K.

In both the examples given above, better agreement

between the specific trajectory (Xls, X2s) and the optimum

trajectory (xl*, xa*) would have been obtained if a rain-

max fit had been performed simultaneously on both xl and

x8. As has been stated previously, this procedure would be

necessary to make the rain-max procedure analogous to the

differential approximation procedure of Chapter 3 of this

report.

6.7 Conclusions and Future Work

Several questions concerning the use of the min-max

criterion in the solution of the SOC problem bear investi-

gating. For instance, can satisfactory solutions to the SOC

problem be obtained by performing min-max fits on selected

components of the state vector rather than on all components
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of the state vector? if so, which components should be

selected? The examples given in the preceding section show

that for the particular system considered, performing the

min-max fit on one component provided a reasonably good fit

of the second component. Another question which may be a_ked

is the following. Rather than fit the components of the

state vector to the respective components of the optimum

state vector, can satisfactory and moaningful results be

obtained by fitting the assumed form o_ the input, h(b, x)

to the optimum control function u*(t)?

It is intended that the answers to these questions be

sought through a series of experiments conducted on the

digital computer. Also, it is deemed very important to

discover ways in which the approach to the SOC problem

developed in this chapter complements the other apT_roaches

mentioned elsewhere in this report. The rain-max approach

is certainly not consldered to be a replacement fo_" the other

approaches.
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CHAPTER 7

CONCLUSIONS

The material presented in this report is based on inves-

tigatione which appear to hold considerable promise as far

as the solution of the acquisition problem of a space vehicle

is concerned. Much futher research is warranted before any

strong claims can be made about the efficacy of using any of

the techniques outlined here for actual design of the neces-

sary controliers.

The reader will notice a certain amount of "disjointness"

in the presentation in this report. This is essentially due

to the many-pronged attack being made at Purdue in the effort

of attempting to use optlmal control theory to design prac-

tical and meaningful feedback controllers for the space vehicle.

No doubt some of the techniques will prove to be barren while,

hopefully, some will bear fruit.

The basic philosophy of the investigations is "digital

experimentation" i. e. using the digital computer to run con-

trolled experiments (principle of feedback in experimentation)

in order to be able to deduce some properties of the structure

of the solutions that one can expect in trying to solve the
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nonclassical types of problems encountered in controlling

systems in a near optimal fashion based on partial information.
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APPENDIX A

OPTIMAL CONTROL SYSTEMS

A. 1 Introduction

The analysis and design of control systems have relied

heavily in the past on empirical methods such as Nyqulst

diagrams, Bode plots, Root loci, etc. These employ linear-

izeci models and provide the designer with qualitatlve infor-

mation regarding the effect of the controller (equalize_-)

on the response of the system.

More recently, attempts have been made in the autom_tic

control literature to develop analytical methods for analysis

and design of control systems. Several of these attempt._

have focused attention on the possibility of using methods

from the calculus of variations in designing control sy_,tem._.

Briefly, optimal contl-o[ theory is concerned with _.

variational formulation of automatic control iproblems anti

the attempt to solve the _esulting problem using methods

from the calculus of variations. Undoubtedly the number of

significant engineering control problems solved to date ,dsinc

optimal control theory is small. However, the methods i_oid

so much promise that they seem now to warrant serious study

on the part of practicing control engineez_.
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In this p_esentation, no special attention will be paid

to mathematical rigor since rigorous justification of each

and every step in the derivations will obscure the main

philosophy of the methods.* The presentations will rely on

the method of dynamic DroarRmmina rlp,v_l('_n_,rl h_, I_,llm:_,-, -,-=_4-_ ---,.-

than the more usual calculus of variations.** This approach

permits a greater simplicity in derivations with a slight

sacrifice in rigor.

A Typical, Optimal Control Problem

A typical optimal control problem is the following:

The plant or ob]ect to be controlled is described by a vector

differential equation of the form

x = f(t, x, u) (A.I.I)

.... x ) called the state vector
n -----

where x is a n-vector, (x,,

of the plant and the components x , i = I, 2 ..... n are
1

called the state variables, x(t) is the state of the plant

at time t. u is a m-vector (u_ ..... u ) and is called the
-- m

*The spirit of the derivations and discussion in this

presentation are along the lines of Chapter V of [15].

**The reader uninitiated in the methods of Calculus of

Variations will find it worthwhile to refer to the excellent

discussion in Chapter IV of [16]. For an advanced and rigor-

ous discussion of the classical Calculus of Variations refer

to [17]. For additional information on dynamic programming

methods, refer to [5], [18].
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i=l 2

l contro____.__!lvecto______[rof the plant. The components ui(t) ....... m

are called control functions, f is a n-vector (fl ..... fn )"

I The fi' i = I, 2, .... n are assumed to possess continuous

" first derivatives with respect to all their arguments.
partial

The control functions may be either unconstrained or

I may be required to fall within an allowable range of values;

I typically u(t) may be required to satisfy the inequality

E kli •ui(t ) • k2i, i=I,2 .... m (A.I.2)

The general constraint on u(t) (an example of which is

I (A.I.2)) will be symbolically denoted by u _ _w_ere _ is a

i suitably defined set.

l In most applications the ui(t) are requlred to be at-

least piecewise continuous thus excluding, for example, im-

N pulse control.

The situation is summarized by the statement that if the

I state x is given at some. initial instant in the form

l X(to) = C O (A.I.3)

I and the control u(T) given for t o • T • t, then the state

x(t) is determined uniquely. This assumption implies for

example that Eq. (A.l.1) cannot be a delay-differential

equation.

The present theory assumes that
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i) the plant is completely controllable, a condi-

tion that is i/ather difficult to establish in

the case of nonlinear time-varying plants;

2) all the state variables are available for meas-

urement; and

3) that disturbances of any kind are negligible.

Such assumptions can seldom be justified in practice because

either

a) some of the state variables are not accessible for

measurement, or

b) some of the state variables that can be measured are

contaminated with noise, or

c) both of the above reasons.

Nevertheless one can still utilize the results of op-

timal control theory by either building the best possible

estimator in the case of noise-corrupted state variables or

obtaining by linear filters (equalizers) the best possible

approximate values of the state variables that cannot be

measured;

kl
s

an example of this is shown in Fig. A.I.

k--_'2 xl_ u'_ klk2S S2

I

I

I

T as small as possible, T > 0

FIGURE A. 1 |

I

k,¢i:,'"rs) I
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The control problem is to find u(t) such that a given

functional of x(t) and u(t) (the index of performance or

The present theory allowsreturn function) is minimized.

indices to take the form

T

I, (u) = I g_ (t, x(t), u(t)) dt + h(T, x(T))
t
o

Xn equation (A.I.4) g, and h are scalar valued functions

of their arguments and are assumed to possess continuous first

partial derivatives with respect to all their arguments. The

terminal time T may be fixed or free; in general the terminal

state x(T) will be restricted to a given region of the state

space.

The right hand side of equation (A.I.4) consists of two

parts which may be intuitively interpreted as consisting of

(i) a part which allows for costs which accumulate over the

entire duration of the process and (2) a part which allows

for costs incurred due to deviations from desired states

when the process terminates.

A control u*(t), t _ t _ T* for which I, (u) is a min-
-- o

imum (subject to (A.I.I), (A.I.2) and initial and terminal

conditions on the state of the system) is called optimal;

_ , _ t _T* isthe corresponding state trajectory x*(t) t o

(A. 1.4)
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called anopt/mal trajectory. Here T* = T if the terminal time

is fixed and T* is equal to that value of T which minimizes

(A. 1.4).

In most practical applications the choice of the actual

pezfozmance index is not obvious. Considerable physical

insight into the actual process to be controlled is necessary

before a meaningful and acceptable performance index can be

determined. The mathematical theory does not aid in picking

a suitable performance index.

experience comes to the fore.

This is where engineering

The minimization of a certain

performance index may yield a satisfactory system for a

particular plant to be controlled, whereas the same perform-

ance index applied to design an optimum controller for a

different plant may yield a considerably different final

system.

For the processes where meaningful performance indices

cannot be obtained in a form suitable for application of

optimal control theory based upon engineering experience;

considerable research effort is currently reported on optimi-

zation of control systems using several performance indices.

While the research may eventually provide the answer on how

to choose the most meaningful performance index for a given
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control application, at the present state of the art one

still has to make an arbitrary choice of a performance index

and use it as a design tool.

The performance index (A.I.4) can be rewritten in the

form

T

(_u)=
t
o

dh ] dtg, (t, x(t) , u(t)) + _ (t, x(t)) _

+ h(t o, x(t o)) (A.I.5)

= Za (U) + h(t O, x(t O)) (A. 1.6)

where

T

1,(u) = "[t
o

g(t, x(t), u(t)) dt (A.I.7)

and

dh't --
g(t, x(t) , u(t)) = g, (t, _(t), _(t)) + _{ , x(t))

(A.I.8)

Since for the optimization problems to be considered

and initial state X(to) are fixed,here, the initial time tO

h(t O, X(to) ) is a constant in the right hand side of (A.I.6).

Hence minimizing Ix(_) is equivalent to minimizing Is(_),

i.e., the same optimal control _*(t) will result when mini-

mizing either functional. Henceforth it will be assumed

that the p__rform_ance index to be minimized is of the fora%
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(A. 1.7).

In the following section, a basic partial differential

equation associated with the optimization problem will be

derived. This equation is called the functional equation of

dynamic programming.

The type of problem considered in this section is often

referred to in the literature as the regulator problem.

A.2

the optimization problem will be derived next.

the method of invariant imbedding will be used.

The Partial Differential Equation of Dynam.ic Proqramminq

A basic partial differential equation associated with

To do this,

The under-

lying idea for invariant imbedding is the following. Faced

with the problem of determining certain properties of one

particular process, one may attempt to do so by considering

that one process in isolation. However, it is often profit-

able and simpler to consider a whole family of processes of

which the original process is a member and try to interconnect

the properties of neighboring processes. This is invariant

imbedding. Many structural properties of the given process

can be determined using this technique.

The root locus method is an example of a technique which

may be interpreted in terms of invariant imbedding. Often one

is interested in determining the location of the closed loop
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poles of a particular fixed value of open loop gain. This

problem may be imbedded in a general class of problems in

which the open loop gain may be a variable and the closed

loop pole locations may now be desired. The solution to the

general problem will yield the solution to the original prob-

lem. One method of solving the general problem is of course,

the root locus method.

For example, instead of considering the specific optimi-

zation problem outlined in the previous section, consider

the following more general problem. In this derivation it

will be assumed that the terminal time T is fixed.

The plant is still described by equation (A.I.I). How-

ever the "initial" state of the plant at time r is given by

x (7) = C. i = I, 2, .... n (A.2.1)
1 1

where - = < C. < =.
1

It is desired to choose u(t), 7 _ t _ T such that a

performance index of the form

T

I(u) = I g(t, x, u) dt
T

(A.2.2)

is minimized.

In equation (A.2.2)

- = < r • T



202

Notice that the original problem has been "imbedded" in

a general class of problems.

class when T = t and C = C
O -- --O

zation problem.

Since the minimum value of the performance index depends

on the initial state C and the starting instant T, define

the "return function" or "value function" J(C, T) as

J(C, r) = Min T g(t, x, u) dt

_u(t) (

The special case of this general

reduces to the original optimi-

subject to the differential constraint (A.1.1) for a process

starting at time T with initial state C_. If constraints of

the form (A.I.2) are specified, the u(t) which minimizes the

integral is required to satisfy these constraints. This will

be symbolically denoted by u(t) (

To proceed further, it is necessary to use the principle

o__foptimality due to Bellman. It is stated as follows-

The Principle of Optimalit 7. An optimal policy has the

property that whatever the initial state and initial decisions

are, the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision.

The principle of optimality may be viewed as a means

for obtaining the optimal "policv" for a "multi-stage decision

process . ,,

(A.2.3)
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Hence, to use the principle of optimality in the problem

of interest here, the optimization problem should be reform-

ulated as a multi-stage decision process. This can be done

Min

_(t) (_

• t _T

as follows.

Rewrite equation (A.2.3) as

J(C, T) = "-_J"

Y
g(t, x, u)dt + _+?(t, x, u)dt I

(A.2.4)

The choice of the control function (or decision) u(t)inthe

interval T • t • T so as to minimize the quantity in the

braces in the right hand side of (A. 2.4) may be viewed as a

choice of u(t) in the first stage T • t _ T _ _ and the

choice of u(t) over the remaining stages r ! _ < t _ T.

From the principle of optimality, whatever the choice

of u(t) in the first stage, the decision u(t), r + Z_ < t _ T

must be optimal with regard to the state resulting from the

first decision.

Now for the arbitrary decision u(t), r & t & T _

for a system in state x(_) = C, the state at time (r + _)

can be determined from equation (A.I.I). Denoting this state

by x(r + _), equation (A.l.1) yields

X(T + _) = C + f(r, C, U(T)) " _ + 0(_ a) (A.2.5)

for d sufficiently small.
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In equation (A.2.5), 0(_ _) consists ¢_ terms which have

the property

Lira 0(Aa) = 0 (A.2.6)

An optimal choice of u(t), r + _ < t < T will yield

T

Min _ I g(t, x, u) dt = J(x(T+_), (T+_))
u(t) ( 7"+

(A.2.7)

y+_< t & T

for a plant which at time (7 + _) is in the state given by

equation (A.2.5).

From equations (A.2.4) and (A.2.7) and the principle

of optimality

P -

J(C, T) = Min | |

_u(t) ¢
L _

T

g(t, x, u) dt + J(X(T+_),

r < t <T + _ (A.2.8)

Now

r+A

T
g(t, x, u) dt = g(T, C, u(r))-d + 0(_ s) (A. 2.9)

Also, using equation (A.2.5)

J(x(T + A) , T + A) = J(C + f(T, _C, U(T))'_ + 0(AS), T + _)

(A.2. i0)
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Expanding the right hand side of equation (A.2.10) about

_, T} using Taylor's formula yields

I J(x(r + _, _ + _ - J(_e,_) + <_z(T, _c._u(r)),vcJ >

+_U. a_r + O (_2) (A.2 ll)

In equation (A.2.11), < , > represents the Euclidean inner

•product of two vectors and vCJ represents the gradient of J

with respect to C defined as the n-dimensional vector

_I' _2 "'" ' _Cn "

I
Substituting from equations (A.2.9) and (A.2.11) in (A.2.8)

yields

Min

u ('t) ¢ _-_
Lg(T, 9, _u(T)).a + a(c, r)

• t,T+ _

Since J(C,T) in the right hand side of equation (A.2.12)

is independent of u(t), it can be moved outside the minimiza-

tion operation. Hence
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I
I

[g(T, c, _-(r))Min

u(t) _ _

T _t _+A

-_---_--& + O =
I

I
Dividing throughout by A and considering the limit when _ - O

yields

I

I

(A. 2.13) I

Replacing r by t and _ by _ in equation (A.2.13), it can

be rewritten as

I

I
_J

m

at + Min
u(t) _

g(t, x, u(t)) +<__(_,_.,_.(,:)),_ > =oj I
(_.T.14)

!
The return function thus has to satisfy equation (A.2.14).

Equation (A.2.14) is called the functional equation of dynamic
I

pro_ranninq. When the minimization is performed and the Eerm

within the square brackets replaced by its minimum value, the

re6ulting equation

ferential equation.

Notice that by the definition of the return function

I

is called the Hamilton-Jacobi partial d_f- I
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(A.2.3), the boundary condition on (A.2.14) is

I J(x, T) = 0
(A.2.15)

To conform with the accepted terminology in optimal con-

trol literature, the functional equation of dynamic program-

ruing will be written using the so-called Hamiltonian for the

minimization problem.

The scalar valued function H(t, x, u, k) called the Ham-

iltonian is defined as

I H(t, 2. _, !) = g(t, _, _) + < _, f(t, x. u) >

(A.2.16)I

I

I

where _ is an arbitrary n-dimensional vector (AI'

called the Lagrange multiplier vector.

..., _)
n

From (A.2.14) and (A.2.16)

_J
_-_ + Min H(t, x, u, VxJ) = O (A.2.17)

u(t) _ ._

I Denote value _ _ instantaneouslythe of n which minimizes

i the Hamiltonian, eq. (A.2.16) by _*. This minimization will

yield u* explicitly (at least in principle) in the form



2O8

H* --U* (t, X, _) (A.2.iS) I

Define

H*(t, _x, _) = H(t, _x, u, __) I
I_u= u_* (t, _x,.A)

(A.2.19)

Thus H* (t, x, _k) is the minimum value of the Hamiltonian with

respect to u ( &%. In term of this minimum value of the Hamil-

tonian, equation (A.2.17) is equivalent to

-_+ (t, _x,

Equation (A.2.20) is the Hamilton-Jacobi paItial different-

ia__!lequation for the optimization problem.

Equation (A.2.20) when solved with the boundary condition

(A.2.15) will yield J_, t) as a solution. Knowledge of t, I
implies that the value of the performance index is deter-

mined for a process starting at any time with any initial

state.

From equations (A.2.16) amd (A.2.17) it is evident that

on an _ptimal trajectory, the Lagrange multiplier vector

can be expressed in the form
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\ = V J (A.2.21)
-- x

Substituting #tom (A.2.21) in (A.2.18) will result in u*

determined explicitly as a function of t, the current time

and x, the current state. This then will truly be a feedback

solution to the optimization problem.

Hence, if the Hamilton-Jacobi equation can be explicitly

solved, the optimal feedback solution can be obtained.

Example

Consider a linear time invariant plant governed by

x = A x + b u (A.2.22)

I

I

I

I

I

I

where A is a n x n matrix and b is a n-vector. In equation

(A.2.22) u is a scalar, which implies that the plant has only

one input. Assume that u is unconstrained.

Let the plant be in an initial state

x(O) = C (A.2.23)

It is required to find a feedback solution, i.e., u as a

function of the current state and possibly current time so as

to minimize a performance index of the form
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- !lj [ 2_I(u) =_ <x. Qx •+au dt (A.2.24)
0

In equation (A.2.24), Q is assumed to be a constant pos-

itive semi-definite matrix and _ is a positive constant.

!

!

is

From equation (A.2.16), the Hamiltonian for this problem !

!

i _ 2 |H(t,_x, u.__) =_<x, Q_x>+_u + <!, A_x+b_u >

1 u 2

=-- < x, Q x >+ < X, A x > + _'u + <__, b > u

(A.2.2S)

To find H* of (A.2.19), the value u* which minimizes H

has to be determined. Since u is unconstrained, this can be

!

!

!
simply done by equating to zero the partial derivative of H

with respect to u. This step yields, from equation (A.2.25)

!

!
_u*+ <I. b>=O !

ioe,,
l

U* = - --i< k, b > (A.2.26)

Hence, corresponding to (A.2.19)
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1 1

H*(t, x, k) = _ < x, Q x > + < A, A X > - 2--G
(< _,, b >)

(A.2.27)

From the fact that the plant and the coefficients in the

integrand of the performance index are time-invariant and the

optimization is for an infinite duration process, it follows

from the definition of the return function, equation (A.2.3)

that J(_, t) will depend only on the initial state _. This

implies that

_J
--= 0 (A.2.28)
_t

From (A.2.20),

equation is

(A.2.27) and (A.2.28), the Hamilton-Jacobi

1 < _x, Q _x > + < VxJ, A _x > - _l (< VxJ, b >)_= O

-- -- (A.2.29)

Assume a solution to (A.2.29) of the form

J = < x, P x > (A.2.30)

where P is an unknown positive definite constant matrix. Then
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VJ = 2P x
_x

(A.2.31)

Substituting from (A.2.31) in (A.2o29)

1
-_ __ - -- A x >---

i #.% _ --

2_ _ < _ -_' b >)2 = O

ieeo

1

< x, _ Q x > + < x, P A x

iQeo#

< x.

> + < x, ATp x > _ 2_ < x, PbbTp x >= o!

!

This implies that the matrix P should satisfy the algebraic

equation

!
1 Q + PA + ATp - 2 p b bTp = O (A.2.32)
2 _ ----

.!
Equation (A.2.32) is equivalent to n(n + 1)/2 simultane-

ous equations involving the n(n + 1)/2 unknown elementm of the

symmetric matrix P. The solution of equation (A.2.32) will de-

termine the matrix P and consequently the return function (A.2,30).
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Also V J of equation (A.2.31) will be determined.
x

From equa-

tion (A.2.21) it is seen that __ will also be determined. Hen_e

the optimal feedback law, from equations (A.2.31), (A.2.26)

and (A.2.21) is

1
u* = -- < 2P x, b >

2
= -- < P b, x > (A.2.33)

From equation (A.2.33) it is seen that the optimal con-

troller is a linear time invariant feedback controller which

requires measurement of all _%e states of the plant.

For numerical evaluation consider specifically the

double _..tegration plant,

Xl = x2 x I'0) = C I, x 2(O) = C 2

_2 = u Xl(®) = ×2 (®) = o

and the performance index

I j_ (4x_ + u2)dtz(u) =7 o
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Using the generic symbols of the example, in this numeri-

cal example

_:[o_]0 0 °

Substituting

Here

From (A. 2.34)

I
I

I

I
_:{o] [_ o] I-- 1 ' Q= 0 0 .a= 1

I
these values in equation (A.2.32) results in

I

I 12 I, ( )
L I

P12 = 1 ,

I

I

PI2 P22

I

Hence, from equation (A.2.30)

I

P22 = I and Pll = 2 I

I

I
(A.2.35)

J = 2x12 + 2XlX2 + x22 a
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I
and from equation (A.2.33), the control law is

215

u* = - 2x I - 2x 2
(A.2.36)

A.3 Pontrvagin' s Maximum Principle

F/ore equations (A.2.15) and (A.2.16) it is evident that

the optimal u, i.e., u*, is such that it minimizes the Ham-

iltonian. This is the statement of the Pontrvagin Maximum

Principle. In other words

A.4

H,(t, x, u*, A) _ H(t, x, u, k) (A.3.1)

for any u _ u*.

The ruler Equations - Unconstrained Control

A set of necessary conditions called the ruler Equations

will be derived next for the optimization problem of Section

A.I. In the following development it will be assumed that

the control vector _(t) is unconstrained. The deviation here

is different from the usual methods of the classical calculus

of variations. It leans heavily on the functional equation

of dynamic programming, viz., equation (A.2.14).

i Equation (A.2.14) is equivalent to the two equations
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v..g + f v j - o (_.4 1)
-U X&L

which is the condition for the term within the square brackets

to be a minimum with respect to the vector u and

-_ + g(t, x, u) + < f(t, x, u), Vx2 > = 0 (A•4.2)

valid for t, _ and _ related by (A.4.1).

is a vector equation• In equation (A.4.1)

sional vector with components

Note that (A.4.1)

rug_ is the m-dimen-.

# | • • • 0

\ _u I 6u 2 _um

and f
--U

is the m x n matrix defined by

f
--U

"_fl _f2

_u I _u 1

_fl _f2

_u _u
m m

_f
n

_u I

_f
__nn
_u

m

(A.4.3)

I

I

I

I

Now consider
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I

| _
(A.4.4)

I
where

I
I

I

I
I

_7
A

_2 82 ... 82

_x12 _x I _x 2 _x I _x n

_2
I

_x n _x I

• • o e • • • • • •
_2

2
_x

n

(A.4.5)

!

!

Taking the expression for the gradient on both sides of equ-

ation (A.4.2) w. r. t. x yields

(A.4.6)

I i.e.,

!
- -fx (v j)(vxxJ) _f+ vx _ = _ Vxg (A.4.7)

!

!

Replacing __ by f in equation (A.4.4) and then substitut-

ing in (A.4.7) yields

!

!
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!

_ =- ' xJ- II

Define

V J = ,k (A.4.9)
x

From (A.4.8) and (A.4.9)

and from (A.4.1) and (A.4.9)

rug + --uf --k= 0 (A.4.11)

Equations (A.I.I), (A.4.10) and (A.4.11) are the Euler

equations for the optimization problem• They represent a

set of 2n first order differential equations and m finite

equations involving 2n + m variables and hence can be solved

when 2n boundary conditions are specified•

The 2n + m Euler equations can be combined and equival-

ently expressed as 2n first order differential equations in

the so-called Hamilton's canonic form. This form makes use

of the Hamiltonian defined in equation (A.2.16).
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From equation (A.2.16), it is seen that

v H = rug + f k (A.4.12)u_ _ --u_--

V}H = _f(t, x, u}
(A.4.13)

V H = 4 f k (A.4.14)
x Vxg --x-

Comparing equations (A.I.I), (A.4.10), and (A.4.11) with

equations (A•4•12) to (A.4.14), it is seen that the Euler

equations can be written in terms of the Hamiltonian in the

following form

x = v H (A.4.15)
- __

- I = V H (A.4.16)
-- X

0 = V H (A.4.17)

The solution of equation (A.4.17) is by definition

equation (A.2.18). Hence if u* is used instead of u in equa-

tions (A.4.15) and (A.4.16), equation (A.4.17) will automat-

ically be satisfied• However, using u_* instead of u in the
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right hand sides of equations (A.4.15) and (A.4.16) is equiv-

alent to using H* of equation (A.2.19) instead of H. This

leads to the Hamilton canonic equations

I

I
I

= V H* (A.4.18)
-

- k = V H* (A.4.19)
-- x

Equations (A.4.18) and (A.4.19) are necessary conditions

which have to be satisfied on an optimal trajectory. They

represent a set of 2n first order differential equations. To

obtain a solution to this set of equations, 2n boundary condi-

tions are necessary. These conditions may be determined

either from the transversality conditions to be discussed

later or they may be specified beforehand by requiring that

the trajectories should originate and terminate at certain

points in the state space•

I

I

I

I
Finally

dH*(t, _x,__)

dt _H* x, V x H* + k, VkH (A.4.20) I+ _ _ > < _ >

Substituting from equations (A.4.18) and (A.4.19) in

I
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(A.4.20) yields

dH- (t, _x, _&) aX*(t, _x,__)
= (A.4.21)dt dt

Equation (A.4.21) shows that if H* does not depend

explicitly on t (i.e., H* = H*(x, l)), then on an optimal

trajectory, the "Hamiltonian" function is a constant, i.e.,

H*(x, A) = constant (A.4.22)

Example

Consider the example of the linear, time-invariant

plant with quadratic integrand in the performance index and

infinite process duration described by equations (A.2.22)

and (A.2.23). For this system, the minimum value of the

Hamiltonian is given by equation (A.2.27). _rom equation

(A.2.27) and equations (A.4.18) and (A.4.19), the Hamil-

ton's canonic equations are

x = A x-" 1 b b T k (A.4.23)

• A T- k = Q x + A (A.4.24)

Equations (A.4.23) and (A.4.24) represent a set of 2n
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simultaneous linear time-invariant first order differential

equations. These are to be solved with the given boundary

conditions :

x,(o) = c, x.(=) = o
.L ./. JL

x2(o) = c2 x2(=) = o

.(A.4.25)

The solution yields the optimal trajectory x*(t). The

optimal control u*(t) is then determined using equation (A.2.26).

Now using the numerical values associated with the double

integration plant of the previous example, equations (A.4.23)

and (A.4.24) reduce to

_:I = x2

X2 = - X2

k I = - 4X 1

(A.4.26)

I

I
I

I

I
I

I

I
I

I
I

I

I

I
I

I

I
I
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Rewrite equations (A.4.26) compactly as

i= B Z (A.4.27)

I
I

I

I

I

I

I
I

where z = column (x I, x 2, _i' k2) and the matrix B is

S

O 1 O O

0 _ O O' -I

-4 0 O O

O O -i O

(A.4.28)

The characteristic equation of the canonical system

det IB - . _ I- o

yields

4
+ 4 = 0 (A.4.29)

From equation (A.4.29), the eigenvalues are

_I = -I + j ; _2 = -i - j ; _3 = 1 + j ; _4 = 1 - j

!
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Hence the solution of the canonic equations is of the form

Xl(t) = k I exp[(-I + j)t] + k 2 exp[(-1 - j)t] +

etc.

i
I

I
I

k 3 exp[(l ÷ j)t] + k 4 exp[(1 - j)t] (A.4.30) !

Note that the canonic system is unstable (half of its

(A.4.31)

x I = k I exp (BI t) + k 2 exp (p2 t)

(A.4.32)

x2 = kl _I exp (_i t) + k2M 2 exp (_2 t)

From the initial conditions in equation (A.4.25)

k 3 = k 4 = 0

Then

eigenvalues are in the right half plane). Hence the only way

to satisfy the terminal boundary conditions in (A.4.25) is

to make the constants associated with the response due to the

right half plane eigenvalues zero.

This implies in equation (A.4.30)



225

k I + k2 = C 1

Plkl + _2k2 = C 2

(A.4.33)

k I and k 2 can now be explicitly determined.

From equation (A.2.26)

u*(t) = -  2(t)

and hence from equation (A.4.26)

u*(t) =

= klPl 2 exp (_i t) + k2_22 exp(_2t ) (A. 4.34)

Equation (A.4.34) yields explicitly the optimal open loop

control function. Thus, the optimum open loop solution of this

particular optimization problem has been determined.

Remark 1

In general the canonic equations represent only nec-

essary conditions for optimality. Hence the solution of the

canonic equations yield, in general, only a "candidate" for

the optimum control function. In this particular example it

can be shown that the solution is actually optimum, in general



226

however, the solution has to satisfy a few other necessary

conditions.

Remar.k 2

In general, the solution of the canonic equations

yields the optimum open loop solution. The ...._'_-- _-_^_

or the dynamic programming formulation of the optimum control

problem will yield the closed loop or "feedback law" solutions.

Remark 3

In the case of linear plants and quadratic performance

criteria, one half of the eigenvalues of the canonic equations

for the regulator problem will have negative real parts. Hence,

in the case of free terminal time, fixed terminal point prob-

lems, the so-called "transversality conditions" are satisfied

by making the optimum system asymptotically stable. In gen-

eral, however, the terminal conditions will represent a curve

or a surface in the solution space* - this surface is some-

times called the terminal manifold. (Such, for example, is

the case in missile interception problems, the rendezvous of

two space vehicles, etc). Hence one must show that the solu-

tion of the optimization problem reaches the terminal

,, .,. |

*The solution space is the (n + I) dimensional space

whose co-ordinates are the n state coordinates and time.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

f
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manifold, i.e., the optimal trajectory _*(t) is non-tangen-

tial to the terminal manifold in the solution space. This

condition of non-tangency is called the transversality

condition. Satisfaction of the transversality condition

guarantees that the optimal system will reach the target.

This transversality condition is discussed in greater detail

in the next section.

Remark 4

The canonic equations have been derived in this

section using the assumption that the control function has

no constraints. However, it can be shown that the canonic

equations are necessary conditions even when there are con-

straints on the control function. Of course, when there

are constraints, the minimization of the Hamiltonian with

respect to the control vector would involve more than exam-

ining the set of equations obtained by setting the suitable

partinl derivatives of the Hamiltonian equal to zero. The

minimum value may occur on the boundary of the allowable

region in which the control vector is constrained to lie.

A.5 The Transversality Condition

Suppose now that the trajectory x(t) must terminate on a

given manifold Z = h(t). In this case, for the optimal curve,

• _' _ the return function, as the final pointthe change In _, _,,
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moves along the specified curve must be zero.

alent to saying that at the final point

This is equiv-

_--_ + < v J, h > = 0
_t x --

(A. 5.1)

Combining this with equation (A.4.2) yields the condition

at the final point

g(t x, u) + __f(t, _x u), v j _ - < v j, h > = 0
X X --

which combined with equation (A.4.9) yields

g(t, _x, H) - <h -_f(t, x, u), __ >- o

(A.5.2)

(A.5.3)

at the final point.

Equation (A. 5.3) is usually written in the form

[g(t, x, U) + < __, _f(t, X, _u) >] I dt -

[t--T

<A(T), d_x _ = 0

(A. 5.4)

where _ is replaced by dx_/dt. In equation (A.5.4) d_ and dt

are differentials on the terminal manifold at the point of its

intersection with the optimal trajectory. Note that the other

terms in equation (A.5.4) are evaluated on the optimal trajeo-

tory.

Equation (A.5.4) is the transversality condition. Note

that in equation (A.5.4) the _, _ and _ refer to their values

!

!

I
I

I
I

I

I
I

I

I
!

I

|

.I

I

I

I

I
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corresponding to the optimal trajectory.

In terms of the Hamiltonian, equation (A.2.19), the

transversality condition equation (A.5.4) is equivalent to

x-(t, x, __) I dt- < _(T), d x > = 0

It=T

(A.5.5)

It is again emphasized that in equation (A.5.5), dt and

dx are differentials on the terminal manifold.

In the case of a fixed time optimization problem with

terminal state free, equation (A.5.5) requires that

_(T) : O (A.5.6)

In the case of a fixed time optimization problem with

the final state specified, equation (A.5.5) is automatically

satisfied since dx = 0 and dt = 0.

A.6 A Minimum Time Problem - Use of _aximum Principle

Consider a two-integration second order plant which is

to be brought to the equilibrium state (= the origin of the

state space) in minimum time. The plant equations are

I _I = x2 ; 12 = u lu I _ 1
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The performance index is

T

I = j dt (T free),
0

x I(T) = x2(T) = O . I

H(X, __, u) = klX 2 + k2 u + 1

Note that _H/_u = k2 for any control u. Hence the 'Hamilton-

ian' attains its minimum value on the boundary of the admis-

sible controls, i.e.,

-i A2 >O
u* = - sgn k2 = 0 k2 = O

+i k2 < 0

and

H*(x, _k) = klX 2 - k2 sgn k2 + 1 I

The canonical equations are

Xl = x2 kl = O

= - sgn k2 k2 = - kl
2
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Since the terminal conditions are Xl(T) - x2(T ) : 0 and

the transversality condition (A.5.5) yields A2(T) = • i,

one can now solve the canonical equations for the optimal

control function u*(t) = - sgn 12(t) for any initial state

[Xl(0), x2(0)]. The result is of, the form shown in Fig. A.2.

Note that the control here is of the relay ("bang-bang",

or "on-off") type. This result has been first obtained by

Bushaw [19].

u(t)

+1

-I

t$ T

FIGURE A. 2

It is interesting to note the simplicity with which this

result is obtained from the maximum principle.

So far nothing has been said about the solutions of the

canonical equations or the validity of the Maximum Principle

(A.3.1), at corners. A continuity argument can be used to
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show the validity of (A.3.1) even at corners of an optimal

trajectory. It can also be shown that the functions _*(t),

A*(t) and H*(t, _*(t)), _*(t)) are continuous functions of t.

The latter statement is equivalent to the Weierstrass-Erdmann

corner condition in the calculus of variations.

A.7 The Solution of a Discrete-Time Optimization Problem

In this section, the application of Bellman's functional

equation to discrete-time (or sampled-data) systems will be

pointed out. This approach was first used by Kalman [203

for solving optimization problems in linear sampled-data

systems, and Kalman's results are reviewed here.

Consider the optimal control problem in discrete time.

Differential equations are replaced by difference equations

and integrals by sums. It should be noted that any optimiza-

tion problem that is to be solved on a digital computer must

be discretized initially. Also, when the limit is taken, as

the sampling period goes to zero, the continuous optimization

problem should result. On this basis, the functional equa-

tion of Bellman represents a general approach to the actual

numerical solution of optimization problems. Starting with

Bellman's equation both discrete and as already discussed,

continuous time optimization problems may be considered in a

systematic manner.

I
I

I
I

I

I

I
I

I
I

I

I
I

I

I
I

I
I

I



233

For the discrete-time case, consider the performance index

to be

N-I

IN= !
i-0

g(x(i) , u(i) , i) (A.7.1)

Since in this case, choice of the initial and final control

signals u(O) and u(N - I) doesn't affect x(O) and x(N - 1),

it is necessary to write the performance index for the N-stage

control process as

I

I

I

I

I

I

I

I

I

I

NN-1

IN= / g(_x(i + i), u(i), i + I) (A. 7.2)

or

N

IN=/
£=i

g[x(i), u(i- i), i!

one is required to find the control sequence u(O), u(1), ....

u(N- i) that minimizes (A.7.2) under the constraints

x(k + i) = ¢_(k) x(k) + H(k} u(k)

_x(o)= c (A.7.3)
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x(N) = free

Problems similar to this were discussed in the previous

sections. The problem with x(N) free and N fixed will be

considered as an example.

With x(0) fixed, the minimum value of (A.7.2) is a

function only of the initial state and the length of the

process. Therefore let

JN[X(0) ] = rain IN_, u, i]
u(0), u(1) ..... u(N-l)

(A. 7.4)

The basic functional equation is obtained by the following

reasoning. Since each stage of the N sta_e process must be

optimum, assume one is faced with the selection of the first

control signal 2(0). Any choice of 2(0) say _'(0), will

result in

IN = g(x(1), u'(0), i) + JN_l[X(1)]
(A.7.5)

The second term on the right is present since the process

must be optimum for the remaining N - 1 stages. Since x(1) is

a function of u(0) (by (A.7.3)), the minimum value of the per-

formance index is obtained by minimizing (A.7o5) with respect

I
I

I
I

I
I

I
I

I

I

I
I

I

I

I

I
I

I
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to u'(O). Thus

JN[X(O) ] = rain Fg(x(1) u(O) l) + JN 1 Ix(l) ]]
u(O) L -- ' -- ' - -- (A.7.6)

i
I

I

I

I

I

I
I

I

I

Equation (A.7.6) is the basic functional equation for the prob-

lem under consideration. Iterative solution of this equation

yields the required sequence u(O), u(1), ..., u(N- i).

An example of this procedure is presented at this time.

Problem Statement
m • u

Given a linear time-invariant plant subject to a

piecewise constant input signal

x(k + l) = #x(k) + h u(k) (A.7.7)

u(k) = constant _ S t < _+i
(A. 7.8)

Determine the control law

u = u (_x)

that minimizes the performance index

IN(X(0), u)= ! ix(i)'= Q x(i)+ _ u(i - i) 2
(A.7.9)
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problem Solution

Define

JN[X(O) ] = min IN[X(O), u]
U

(A.?.i0)

By using the principle of optimali-.y, o_e kr_ws_hat at the

beginning of the N-stage process one must make an optimal de-

cision. Choosing any value of u(O) will result in

xl[x(o), u(o) ] (A. 7.11)

Since the remaining N - i stages must constitute an optimal

policy, the performance index is

ZN(_X(O),u) - Xl[X(O), u(O) ] + JN_l[_X(1)] (A.7.12)

In order to minimize this function over the total N stages,

write

JN[X(O) ] = rain [I
u(O)

l(X(O), u(O)) + JN_I(_X(1))] (A.7.13)

which is the same as (A.7.6). To start the solution,one requires

that when N = 1

I

I
I

I
I

I

I
I

I

I

I
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I
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I Jl[X(O) ] : rain ll(X(O), u(O))
u(O)

(A. 7.14)

The following procedure has been rigorously justified [20].

Consider the matrix Q to be symmetric and _ a O. The optimal

return from an N stage process starting at x(O) may be writ-

ten as

JN[X(O) ] = x' (0) P(N) x(O) (A.7.15)

where P(N) is symmetric. Using this in (A.7.13), one has

JN[X(O) ] = min [x' (I) Q x(1) + _ I(0)
u(O)

* x' (1) P(N-I) x(1) ]

(A.7.16)

and from (A.7.7)

I

I

I

I

JN[X(O) I = min Ix' (0) d_' [Q + P(n - i) 3 q_x(O)
u (O)

+ 2h' [Q + P(N- l)] _x(O) u(O)

+ [h' [Q + P(s- Z)]h + _] u2( o)! (A. 7.17)

From (A.7.17), define
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!

!
s(s- l) _o + P(_-- l)

(A. 7.18) I

The value of u(O) that minimizes (A.7.17) is easily found

to be

I

!

u (0) = - h' S(N- l) __ x(O) = f, (N - l) x(O) (A.7.19) I

_' s(_- i) h. c, - I

From (A.7.19), u(O) is then that value of control signal to

be used at the start of an N-stage process. For this reason

a subscript N will be included and (A.7.19) will be written

as

UN(O) = f' (N - i) x(O) (A. 7.20) I

Notice that (A.7.20) represents a linear combination of

the state variables.

I

I
The minimum value of (A.7.17) may be written as

,.TN[_x(o)] : _x'(o) P(N) _x(0) I

=a'(o) [@+ h_' (N - l)]' S(S- l) [_+ h_f'(N- l)] x(O)

+ a _x'(0) f(N - i) f' (N - i) x(O) (A.7.21)



239

Thus from (A.7.21) one has a recurrence equation for P(N),

P(N) = [+, h_f (_ - i)]' S(N - i)[% + h__'(N - i)]

+ =_f(_ - l) _f'(N- l)

(A.7.22)

It is now possible to solve for the optimum control law in an

iterative manner as follows: Start with a one stage process

(i.e., N = I). From (A.7.16) and (A.7.22)

2

Jl[X(0) 3 = rain [x' (I) Q x(1) + _ u (0) 3
u(0)

2
= rain Ix' (1)[Q + P(0)] x(1) + _ u (0)]

u(0)

(A.7.23)

Therefore let P(0) = 0 ,and from (A.7.18) S(0) = Q.

(A. 7.19) ,

Using

ul(O) = _f'(o) _x(o) (A. 7.24 )

In order to obtain u2(0) (i.e., the first signal for a two

stage process), use f'(0) obtained in (A.7.24) with (A. 7.21)

in order to calculate P(1). When P(1) is calculated, use (A.6.18)

to determine S(1). Equation (A.7.19) is then used to calculate

u2(0 ) and the calculations unfold in this manner. The optimum
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feedback coefficients are obtained as

_f'(0). f'(1). _f,(2)..... , _f'(s - i) (A.7.25)

These coefficients are then used in reverse order.

example, for a three stage process,

For

u I(0) : f' (0) x(2)

u2(0) =_f'(z) x(1) (A.7.26)

u 3(0) = f' (2) x(0)

Equation (A.7.26) has the following meaning. Ul(0) is the

optimal first signal for a 1 stage process; u2(0 ) is the opti-

mal first signal for a 2 stage process and u3(0) is the optimal

first signal for a three stage process. Therefore the feed-

back coefficients for the three stage process are: at t = 0, r

multiply the state of the plant by f'(2), at t = T, by f'(1)

and at t = 2T by f'(0). Notice that in general, the control

law is non-stationary for finite length control processes.

It has been shown in general that as the number of stages in

the process approaches infinity, the value of f' (-) approaches

a constant and a linear, time-invariant control law results.

In practice, the feedback coefficients generally converge rather

I

I

I

I

I

I

I

I
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rapidly and approximately optimal control of finite length pro-

cesses may be obtained by using constant feedback from the state

variables.

A.8. Conclusions

Modern optimal control theory marks a distinct departure

in philosophy as well as in method from classical control

techniques. First, the object is no longer merely to come

within a given set of specifications but rather to go further,

in fact to go all the way to an optimum solution. In order

to accomplish this feat a great deal of information must be

given about the plant and its desired performance. A second

difference is the need for an index of performance in the mod-

ern theory, which requires the designer to completely specify

desirable performance as a function. In truth it must be ad-

mitted that this is difficult or impossible to do with the

present state of knowledge. Further study in this area is

surely needed. Moreover this is not the type of study which

can be made by researchers unfamiliar with applications. A

vast backlog of engineering expe_ience with a variety of per-

formance indices appears to be the only way out of this dilemma.

It should be noted that no attempt has been made in this

appendix to discuss the problems associated with hard con-

straints. A detailed consideration of the problem of constrained

control is given in chapter 4 of this report.
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I Method of Quasi-Linearization

Let a vector differential equation

I __=_f(x, t) to _ t _ tT

be given with the boundary conditions

(S.l)

< _c(ti), x(t i) > = b.z i = I, 2, ..., n (B.2)

to _ t I _ .-- _ t _ t_n T

where C and x are n-dimenslonal vectors. It is assumed that

equations (B.I) and (B.2) have a unique solution on [t o , tT].

Let .X_ (t) be an initial guess to the solution of equation

(B.1) on [to, tT]. The (k + l)-st approximation is then ob-

tained from the k-th via

II _%_1: _ft._, t)+ Jc£¢__, t))¢-_+1--_) (B.3)

m

I

I

and _Xk+ 1 satisfies equation (B.2), where J is the Jacobian

matrix whose ij-th element, _fi/_x_, is the partial derivative

th .th
of the i component of _ with respect to the 3 component
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of x.

The components of the initial approximation vector _o(t)

may be constants, suitably chosen functions of time, polynom-

ials in to etc. The first approximation _l(t) is obtained as

the solution of

I

= J(f(x o t)) x I + f(xo t) J(f(x o, t))_ (B.5) I

satisfying equation (B.2).
l

Let _I (t) be the fundamental solution matrix of •

!
%1 = J (f(x°' t) ) _l' _l(O) = identity matrix (B.6)

Let _l (t) be the particular solution vector of

-Pl= _ (_f(_Xo, t)) _I + f(xo, t) - J(_f(_xo,t))_xo, I

_i (o) = _o (B._)

Then the solution of equation (B.5) is written as

_xl(t) = 4)l(t) k z + -Pi(t) (B.8)
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I

I

I
I

I

I
I

I

I
I

I

I
I
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I

I

I
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where _I is a constant vector determined by solving

< C(t.}, (_.(tl)kl + =Pl(ti )) > _= b. i = 1 2-- ± i -- 1 ' '

_e entire calculations are easily carried out on a digital

computer. The convergence of this scheme, which is quadratic

in nature, and many other problems are discussed in reference

[i0!, [22].
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Method of Differential Spproximation

An interesting problem _ich has many practical applica-

tions is the following: Given a vector valued func£ion _(t)

of dimension n defined in the interval O _ t _ T, is it pos-

sible to find an n-dimensional vector differential equation

of the form

__= f(t, _x) (C.l)

such that the solution of this differential equation with

initial conditions

_x(o) = ._(o)

I
I

I

I

I

I
i

I

(C.2)

is identical with _(t) over the interval 0 _ t _ T?

The solution to this problem is rather difficult to find

in general. However, a slightly reformulated version of this

problem is rather easy to solve and quite adequate in practice.

The reformulated problem is posed as follows: Again, given

the function _(t) defined above and the differential equation.

: _[(t, _x, b__) (C.3)



246

where the form of the function g is known except for a finite

set of parameters b, determine b such that the solution of

(C.3) with initial conditions (C.2) is "closest" to i(t), over

!

!

!
the interval 0 • t • T the term closest being suitably defined.

Note that if a set b = b_ existed such that
Ju

_(t) • g(t, _, bl) 0 • t & T (C.4) I

then, this is the set which will make the solution of the dif-

erential equation (C.3) with initial condition (C.2) identical

with _(t). However, in general such a set of parameters will

not exist.

A reasonable compromise is to seek for a set b = _2 such

that a suitable function

_(t) - g(t, _, b 2) (c.5)

is close to zero in an acceptable sense.

be obtained as the solution of

For example _2 may

or

T

Min f l l_(t) -g(t, _, b) 112
b o

dt (C.6)



I

I

I

l

I

I

I

I

l

Min sup I l_(t) - g(t, _, b2) I J
b 0 _ t _T
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(c.v)

In (C.6) and (C.7) II" II is the Euclidean norm.

The minimization problem implied by (C.6) is often easily

solved by equating to zero the partial derivatives of the in-

tegral with respect to the components of b, this yielding a

sufficient set of simultaneous equations involving the com-

ponents of _, subsequently solving these simultaneous equations.

The minimization problem implied by (C.7) is much more

difficult to solve.

The technique by which a set of parameters in a differ-

ential equation are selected so as to match £ts trajectory

with a given function of time is called differential approx-

imation [23].
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The technique presented here of applying invariant imbed-

ding to boundary value problems is essentially that of refer-

ence [29]. Consider the TPBVP described by the differential

equations

4

= f(t, x, y)

9 = g(t, x, y) (D.l)

with boundary conditions

I
p

I

I

I

I

I.

I
!

I

I

y(O) = a y(T) = b (D.2)

Let r(C, T) denote the missing terminal condition on x for

a process starting at time O and ending

isfying y(O) = a, y(T) = C, i.e.,

x(T) = r(C, T)

at time T and also sat-

(D.3)

In equation (D.3) C and T are regarded as independent va-

Eiables. From equation (D.I) then

r(C + _, T + _) = r(C, T) + f(T, r, C)_ + 0(_ 2) (D.4)

where lim 0(_)

4-0
= O.
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Expanding the left hand side of equation (D.4) using Tay-

lor's formula yields

_r _r
r(C + A C, T + AT) = r(C, T) + AC _ + _ _ + 0(A 2)

(D.5)

From equation (D.I)

_C = g(T, r, C)_T + O(d 2) (D.6)

I

I
I

I
I

I

I
Equating the right hand sides of equations (D.4) and (D,5}

and passing to the limit as _O yields

I

I
_r _r

_--_+ g(T, r C)- = f(T, r, C)' _C
(D. 7)

Equation (D.7) is a partial differential equation which

with the proper boundary conditions on r governs the depend-

I

I

I
ence of the missing terminal conditions on x as a function

of the duration of the process and the terminal conditions on y.
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_H*
_r _r _H* (T r C) = -- (T r, C) (E.I)
_--T- _C _r ' ' _C '

I

I

I
I
I

I

I
II

II

II
II

II

II

substituting into equation (E.I) using equation (5.5.3) yields

_r _r ! (T, r) [y-h(T, r)]_-_- _ Cg r(T. r) - 2h r

C 2 w (T, r)
1 r

2 2
w (T, r)

= g(T, r) -
C (E.2)

2w(T, r)

where gr - _r "

Try an approximate solution for r(C, T) of the form

r(C, T) = P(T)C + _(T) (E.3)

Substituting equation (E.3) into equation (E.2) and ex-

panding the result about r(O, T) gives to first order

dP C + d_ [d-_ _ + P(T) -C [g_(T, x) + g_(T, x) PC]

+ 2h_(T, x) {y - h(T, x) } +
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C 2

+ 2 _ {h_(T. _) (y - h(T, _)) ]Pc - 7
w (T° _)

1 C 2 B w_(T, _)
-7 _ { }_]

w2(T, _) (E.4)

.. C C _ 1 ]PC
= g(T, _) + g_(T, _)PC- 2w(T, _) -7 _x { w(T, _)

Collecting terms of order C° ,

and C 3 yields

and those of order C 1, C2,

d_
----= g (T _) -
dT 2P (T) h_ (T,' x) (y - h(T, _))

dP
c i'_- 2ceg_ - 2P -_x {h_(y - _ (T, _))]Pc

- C
2W(_T, _) + (terms of order C 2 and C 3)

(E.5)

If equation (E.5) is satisfied then so is equation (E.4). Di-

viding the P equation in (E.5) by C, substituting -P for P,

and noting that only those solutions for which C = 0 are of

interest, then the sequential estimator equations become

d_
d-_= g(T, _) + 2P(T) h_(T, _) {y- h(T, _)']
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I
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I
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I

I

I

I

I

I

I

I

I

I

I

1

+ 2w(T, _)
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(E.6)
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For t/%e vector case consider the class of systems defined b h,

= g(t, x) + k(t, x) u
(F.I)

y (t) = h (t, x) + (observation error)

where x is an n-vector

g(t, x) is an n-vector function

k(t, x) is an n x p vector function

u is a D-vector unknown input

h(t. x) is an m-vector

y is an m-vector output

Define hhe vector residual errors as

e l(t) = y - h(t, R) (F.2)

e 2(t) = x - g(t, R) (F.3)

The least estimate of x(t) O _ t _ T is given by
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T

x(t) 0 _ t & T
o

2 2

wh,re{illo _d llilw are suitably defined quasi-norms.

Denote by x(t) 0 _ t _ T the function which minimizes the

expression (F.4). The least squares estimate of x(T) is

then x(T) .

Using equation (F.1) for motivation and substituting

[lle,(t)llQ÷ li-,(t)llw] dt (F.4)

!

!

from equations (F.2) and (F.3) into the expression (F.4),

then minimizing the expression (F.4) with respect to

x(t) 0 • t _ T is equivalent to minimizing

o

with respect to x(t) and u(t) 0 & t & T subject to the

differential constraint

Let

x = g(t, x) + k(T, x )u (F.6)

V(t, x) = k' (t, x) W(t, x) k(t, x) (F.7)

and define the "pre-Hamiltonian" H(t, x, k, u) by
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+ <k, g(t, X) + k(t, x)u) (F.S)

where <- , -7 denotes the Euclidian inner product. Setting

U

D

Ul

_

u_

m

U
p

: 0 (F.9)

solving for u(t, x, I) assuming V is not singular, and sub-

st_tuting u back into H leads to the Hamiltonian H*(t, x*, _).

The variab3e x* replaces x to indicate that x* is the tra-

jector¥ _13onq which the maximum principle is satisfied. The

Hamiltonian is then

2

L_*ct.x*. _) - ILy-h(t, x*IILo + <x. g(t. x*l>

_! <_. k v-_ k' _>
4

(F.10)

The Euler-Lagrange equations are then
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x* all*=-- (t, x*, _)
_k

(F. 11)

_H*=--- (t, x*, A)
ax*

transversality conditions yield

k(0) = 0 k(T) = 0 (F.12)

In order to solve the sequential estimation problem it

is necessary to solve the TPBVP given by equations (F.11)

with boundary conditions (F.12) for all T, where now the

variable T is regarded as an independent variable.

Imbedding these TPBVP's in a larger class of TPBVP's

with boundary conditions

k(0) = 0 A(T) = C (F.13)

and letting the mimaing terminal condition on x be r(C, T),

then r(C, T) satisfies the invariant imbedding equation

__ _ _H*ar br _H* (T, r, C) =-- (T, r, C) (F.14)
aT aC _r _C

where
_r i

_c
3

I
I

I

I

I
I

I
I

I

I
I

I
I

I

!

I
I

I



257

Consider an approximate solution of the non-linear

partial differential equation (F.14) of the form

r(C, T) = P(T)C + x(T) (F.15)

where P(T) is an n x n matrix

C and x are n-vectors

Substituting equation (F.15) into equation (F.14) gives

dx _H*
d_P C + -- - P(T) -- (T, PC _ x, C)
dt dT %r

_H*
=--{T, PC÷x C)

aC

(F. 16 )

Now expand equation (F.16) about r(0, T) retaining

terms to first order. The motivation for this approach ls

t1_at only those solutions of equation (F.14) for which C = 0

are of interest. Also, the least squares estimate of x(T),

I

I
I

now denoted by x(T) to emphasize the sequential nature of

the problem, is r(0, T). The result is

__ dx [ _H*dP C +- - P(T) (T x, C) +
dt dT L _r '

{F. 17 )

I _ H* ] _H*_r_- (T, _, c) pc =T c- (T, _, c)

_a H*
+- (T, x, C) PC

araC
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whe re I
aSH * _SH*

(T _. c) = { (T.

(F.18)

_H* I

At this point it will be convenient to write the equa-

tions in component form. The summation convention will be

used, i.e. if an index is repeated in a term then summation

is implied. For example

a..b .C = _ _ a..b .C (F.19)
13 m3 m J' _ 13 m3 m

m j

Also G . or (G)
i3 ij

will mean the (i,j)-th element of the matrix

G while C. will denote the j-th component of the vector C.
3

Writing equation (F.17) in component form gives

dP d_:.

C ÷- - P + (PC)

dt ] dt ij _ _ ,4'.
r=x J '[ r=x

(F.20)

= _H* (T, x, C) + < _amH* _/i_3llr=_(PC)jac i
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It is now necessary to digress in order to determine

the various partials of H* as given by equation (F.10)

a) ]
_r. _ _.

3 Ir= & 3

(F.2])

I
1 _ *k ' Cm

I + (gx) 4j C4- _ C, @_xj (k V" ),m

b)
[_r_l_@mH*

(T, x, C)}.

_H*

_ Ir= _
(F.22)

_x4 u X j

_ (gx) jm Cm

! @a
4 Cn @x @x. (k V'*

4 ]

k')

_! (kV'* k') C
2 i_

C
nm m

(F.23)

d) baH * _ _H*,__.c_} _ <_ >
i] 3 m

(F.24)

1 @

(g_)ij - 2 _.
]

(k V-* k')i% C&
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Substituting equations (F.21, .22, .23, .24) into equa-

tion (F.20) gives

uP aS

i] C. +- - P . -2 h Q(y - h) ÷ (gx)%9 C_
aT S dT i] j

(F.25)

_.1 C _ ,
- 4 : "_'_'x. (k V"

3

_, (gx) jm Cm -

I
1 a_

Cn _,_j (k V'* k')nmCm} (PC)_} I

= gi(t, _) - ! v-_ ' c + (g_ (Pc)2 (k k )i_ _ j J

2 a_:.
3

(k V-* k')i4 C2 (PC)j

Collecting terms of order C ° and those of order C* and

higher yields the following:

Terms of order C°

aS

---!i - P . {-2[h x Q(y - h)] } = gi(t' x)dT i 3
3

(F. 26)
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Rewriting equation (F.26)

d_
1

dT - gi (t. x) - 2Pij[h x Q(y-h)].
3

(F. 27)

Terms of order C* and higher

dPi----_dTC2 - Pij {(gx) £j C - (PC)_}

l * ' c_ + (g&)= - 2 ( k V" k )it iZ

(F.28)

+ (terms of order C' and C_)

Rewriting equation (F.28)

dPil

d--_ C_ = Pij (gx) _j C( + (gx) it P_m Cm

__i I , C_-2 (k V- k )i_ "

(F. 29)

- 2Pij _ [h x Q(y-h)]j Pm_ C

+ (terms of order C a and Cs)
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If equations (F.27) and (F.29) are satisfied then so is

equation (F.25). The solution of equations (F.25) of inter-

est are those for which C = O. Hence the estimator equa-

tions become

1

dT %_. _ - 2_ij[h._ Q_y-h,.t.
3

I

I

I
(F.30)

dP. .

= P.{(g_) + (g_) P
dT • j _ i ¢ ¢j

l l

(k V- k')i.32

- 2Pi¢ _ Kh x Q(y-h)_ Pmj
m :.

Substituting -P.. for P.. then in vector, matrix nota-
• 3 13

tion equations (F.30) become

d_x = g(T x) + 2P(T) H(t x) Q[y- h(t, x)]
dT '

(F.31)

[ -I_-_ = g_(T, x) P + Pgx(T, x) + 2P H Q{y- h(t, _)]3j. p

1 V_ I

X
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I
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I
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p
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I

I
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I
I

where

Column
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H(t. _)

Oh.

3

[H Q [y - h(t, x)]!
&*
x

is an n x n matrix with ith


